Skip to main content

On the Focusing Energy-Critical 3D Quintic Inhomogeneous NLS

  • Conference paper
  • First Online:
Advances in Harmonic Analysis and Partial Differential Equations

Part of the book series: Trends in Mathematics ((TM))

  • 416 Accesses

Abstract

We consider the focusing energy-critical inhomogeneous nonlinear Schrödinger equation:

$$\displaystyle iu_t + \Delta u + g|u|{ }^4u = 0, \;\;u(0) \in \dot {H}^1,\;\; g \ge 0. $$

On the road map of Kenig–Merle [20] we show the global well-posedness and scattering of radial solutions under scaling, variational, and rigidity assumptions for g. We also provide sharp finite time blowup results for nonradial and radial solutions. For this we utilize the localized virial identity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, T.: Équations différentielles non linéaires et probléme de Yamabe concernant, la courbure scalaire. J. Math. Pures Appl. IX. Sér. 55, 269–296 (1976)

    MATH  Google Scholar 

  2. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Article  Google Scholar 

  3. Boulenger, T., Lenzmann, E.: Blowup for biharmonic NLS. Ann. Sci. Éc. Norm. Supér. 50, 503—544 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cazenave, T.: Semilinear Schrödinger Equations. In: Courant Lecture Notes in Mathematics, vol. 10. New York University/Courant Institute of Mathematical Sciences/American Mathematicla Society, New York/Providence (2003)

    Google Scholar 

  5. Cazenave, T., Weissler, F.B. The Cauchy problem for the critical nonlinear Schrödinger equation in H s. Nonlinear Anal. Theory Methods Appl. 14, 807–836 (1990)

    Article  Google Scholar 

  6. Cho, Y.: Well-posedness and scattering of inhomogeneous cubic-quintic NLS. J. Math. Phys. 60(8), 081513, 13 (2019)

    Google Scholar 

  7. Cho, Y., Lee, K.: Small data scattering of the inhomogeneous cubic-quintic NLS in 2 dimentions. Nonlinear Anal. 188, 142–157 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contem. Math. 11, 355–365 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cho, Y., Hwang, G., Kwon, S., Lee, S.: Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations. Nonlinear Anal. Theory Methods Appl. 86, 12–29 (2013)

    Article  Google Scholar 

  10. Cho, Y., Hwang, G., Ozawa, T.: On the focusing energy-critical fractional nonlinear Schrödinger equations. Adv. Differ. Equ. 23, 161–192 (2018)

    MATH  Google Scholar 

  11. Ding, W.-Y., Ni, W.-M.: On the elliptic equation Δu + Ku (n+2)∕(n−2) = 0 and related topic. Duke Math. J. 52, 485–506 (1985)

    Article  MathSciNet  Google Scholar 

  12. Dinh, V.D.: Blowup of H 1 solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. Theory Methods Appl. 174, 169—188 (2018)

    Article  Google Scholar 

  13. Farah, L.G., Guzmán, C.M.: Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation. J. Differ. Equations 262, 4175—4231 (2017)

    Article  Google Scholar 

  14. Foschi, D.: Inhomogeneous Strichartz estimates. J. Hyperbolic Differ. Equ. 2, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  15. Gill, T.S.: Optical guiding of laser beam in nonuniform plasma. Pramana J. Phys. 55, 842–845 (2000)

    Google Scholar 

  16. Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys. 18, 1794–1797 (1977)

    Article  MathSciNet  Google Scholar 

  17. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Comm. Math. Phys. 282, 435—467 (2008)

    Article  MathSciNet  Google Scholar 

  18. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955—980 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kenig, C.: Global Well-posedness, Scattering and Blow Up for the Energy-Critical, Focusing, Nonlinear Schrödinger and Wave Equations. http://math.uchicago.edu/~cek/Kenigrev1.pdf

  20. Kenig, C., Merle, F.: Global well-posedness, scattering and blow up for the energy critical focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  MathSciNet  Google Scholar 

  21. Keraani, S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differ. Equ. 175, 353–392 (2001)

    Article  Google Scholar 

  22. Merle, F.: Determination of Blow-up Solutions with Minimal Mass for Nonlinear Schrödinger Equations with Critical Power. Duke Math. J. 69, 427—454 (1993)

    Article  MathSciNet  Google Scholar 

  23. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  24. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse. Springer, Berlin (1993)

    Google Scholar 

  25. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  26. Tang, X.-Y., Shukla, P.K.: Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrödinger equation with an external potential. Phys. Rev. A 76, 013612-1–013612-10 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for careful reading. This work was supported by NRF-2018R1D1A3B07047782 (Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyeon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, Y., Lee, K. (2020). On the Focusing Energy-Critical 3D Quintic Inhomogeneous NLS. In: Georgiev, V., Ozawa, T., Ruzhansky, M., Wirth, J. (eds) Advances in Harmonic Analysis and Partial Differential Equations. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-58215-9_6

Download citation

Publish with us

Policies and ethics