Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 160–167. ACM, New York (2008). https://doi.org/10.1145/1390156.1390177, http://doi.acm.org/10.1145/1390156.1390177
Costante, E., Sun, Y., Petković, M., den Hartog, J.: A machine learning solution to assess privacy policy completeness: (short paper). In: Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society, WPES 2012. ACM, New York, pp. 91–96 (2012). https://doi.org/10.1145/2381966.2381979, http://doi.acm.org/10.1145/2381966.2381979
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint (2018). arXiv:1810.04805
Guntamukkala, N., Dara, R., Grewal, G.W.: A machine-learning based approach for measuring the completeness of online privacy policies. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 289–294 (2015)
Google Scholar
Harkous, H., Fawaz, K., Lebret, R., Schaub, F., Shin, K.G., Aberer, K.: Polisis: automated analysis and presentation of privacy policies using deep learning. In: Proceedings of the 27th USENIX Security Symposium (2018)
Google Scholar
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint (2016). arXiv:1607.01759
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/D14-1181, http://aclweb.org/anthology/D14-1181
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)
Google Scholar
Landesberg, M.K., Levin, T.M., Curtin, C.G., Lev, O.: Privacy online: a report to congress. NASA (19990008264) (1998)
Google Scholar
Libert, T.: An automated approach to auditing disclosure of third-party data collection in website privacy policies. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, pp. 207–216 (2018). https://doi.org/10.1145/3178876.3186087
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA (2008)
CrossRef
Google Scholar
McDonald, A.M., Cranor, L.F.: The cost of reading privacy policies. ISJLP 4, 543 (2008)
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, vol. 2, pp. 3111–3119. Curran Associates Inc., USA (2013). http://dl.acm.org/citation.cfm?id=2999792.2999959
Mnih, A., Hinton, G.: Three new graphical models for statistical language modelling. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 641–648. ACM, New York (2007). https://doi.org/10.1145/1273496.1273577, http://doi.acm.org/10.1145/1273496.1273577
Obar, J.A., Oeldorf-Hirsch, A.: The biggest lie on the Internet: ignoring the privacy policies and terms of service policies of social networking services. Inf. Commun. Soc. 23, 1–20 (2018)
Google Scholar
Sathyendra, K.M., Schaub, F., Wilson, S., Sadeh, N.M.: Automatic extraction of opt-out choices from privacy policies. In: AAAI Fall Symposia (2016)
Google Scholar
Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002). https://doi.org/10.1145/505282.505283, http://doi.acm.org/10.1145/505282.505283
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1555–1565. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/P14-1146, http://aclweb.org/anthology/P14-1146
Van Asch, V.: Macro-and Micro-Averaged Evaluation Measures (Basic Draft). CLiPS, Belgium (2013)
Google Scholar
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Google Scholar
Wiener, E., Pedersen, J.O., Weigend, A.S.: A neural network approach to topic spotting (1995)
Google Scholar
Wilson, S., et al.: The creation and analysis of a website privacy policy corpus. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1330–1340 (2016)
Google Scholar
Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint (2016). arXiv:1609.08144
You, Y., Li, J., Hseu, J., Song, X., Demmel, J., Hsieh, C.J.: Reducing BERT pre-training time from 3 days to 76 minutes. arXiv abs/1904.00962 (2019)
Google Scholar
https://code.google.com/archive/p/word2vec/