Advertisement

Service Analytics: Putting the “Smart” in Smart Services

Chapter
  • 190 Downloads

Abstract

Artificial intelligence in general and the techniques of machine learning in particular provide many possibilities for data analysis. When applied to services, they allow them to become smart by intelligently analyzing data of typical service transactions, e.g., encounters between customers and providers. We call this service analytics. In this chapter, we define the terminology associated with service analytics, artificial intelligence, and machine learning. We describe the concept of service analytics and illustrate it with typical examples from industry and research.

References

  1. Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31.Google Scholar
  2. Böhmann, T., Leimeister, J. M. & Möslein, K. (2014). Service-systems-engineering. Wirtschaftsinf, 56, 83–90 (2014).Google Scholar
  3. Bousquet, O., von Luxburg, U., & Rätsch, G. (2011). Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, February 2–14, 2003, Tübingen, Germany, August 4–16, 2003, Revised Lectures (Vol. 3176). Berlin: Springer.zbMATHGoogle Scholar
  4. Chollet, F. (2017). Deep learning with python (1st ed.). Greenwich, CT: Manning Publications.Google Scholar
  5. Davenport, T., & Harris, J. (2017). Competing on analytics: Updated, with a new introduction: The new science of winning. Brighton, MA: Harvard Business Press.Google Scholar
  6. Delen, D., & Demirkan, H. (2013). Data, information and analytics as services.Google Scholar
  7. Eichengreen, B., & Gupta, P. (2011). The two waves of service-sector growth. Oxford Economic Papers, 65(1), 96–123.Google Scholar
  8. Emmert-Streib, F., & Dehmer, M. (2009). Information theory and statistical learning. Berlin: Springer.zbMATHGoogle Scholar
  9. Fromm, H., Habryn, F., & Satzger, G. (2012). Service analytics: leveraging data across enterprise boundaries for competitive advantage. In: U. Bäumer, P. Kreutter, W. Messner (Eds.), Globalization of professional services: Innovative strategies, successful processes, inspired talent management, and first-hand experiences (pp. 139–149). Berlin: Springer.Google Scholar
  10. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  11. Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: Data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83–85.Google Scholar
  12. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
  13. Heid, B., Huth, C., Kempf, S., & Wu, G. (2018). Ready for inspection: The automotive aftermarket in 2030. Technical report, McKinsey & Company.Google Scholar
  14. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29(6), 82–97.CrossRefGoogle Scholar
  15. Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In Proceedings. 2004 IEEE International Joint Conference on Neural Networks, 2004 (Vol. 2, pp. 985–990). Piscataway, NJ: IEEE.Google Scholar
  16. Kisore, N. R., & Reddy, P. G. (2015). Empirical determination and evaluation of factors that impact ATM placement. In 2015 48th Hawaii International Conference on System Sciences (pp. 1341–1348). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
  17. Kohavi, R., Rothleder, N. J., & Simoudis, E. (2002). Emerging trends in business analytics. Communications of the ACM, 45(8), 45–48.CrossRefGoogle Scholar
  18. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).Google Scholar
  19. Kühl, N., Goutier, M., Hirt, R., & Satzger, G. (2019). Machine learning in artificial intelligence: Towards a common understanding. In Proceedings of the 52nd Hawaii International Conference on System Sciences.Google Scholar
  20. Kühl, N., Hirt, R., Baier, L., Schmitz, B., Satzger, G. (2020). How to conduct rigorous supervised machine learning in information systems research: The supervised machine learning reportcard, communications of the association for information systems.Google Scholar
  21. Laubis, K., Simko, V., Schuller, A., & Weinhardt, C. (2017). Road condition estimation based on heterogeneous extended floating car data. In Proceedings of the 50th Hawaii International Conference on System Sciences.Google Scholar
  22. LeCun, Y. A., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature, 521(7553), 436–444.Google Scholar
  23. Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Trans. Information Theory, 28, 129–136.MathSciNetzbMATHGoogle Scholar
  24. Maglio, P. P., Kieliszewski, C. A., Spohrer, J. C., Lyons, K., Patrício, L., & Sawatani, Y. (2018). Handbook of service science (Vol. II). Berlin: Springer.Google Scholar
  25. Martin, D., Kühl, N., von Bischhoffshausen, J. K., & Satzger, G. (in press). System-wide learning in cyber-physical service systems: A research agenda. In Proceedings of the 15th International Conference on Design Science Research in Information Systems and Technology (DESRIST 2020), Kristiansand, Norwegen, November 2020.Google Scholar
  26. Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  27. Neely, A. (2008). Exploring the financial consequences of the servitization of manufacturing. Operations Management Research, 1(2), 103–118.Google Scholar
  28. Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370–384.Google Scholar
  29. Nilsson, N. J. (2014). Principles of artificial intelligence. Burlington, MA: Morgan Kaufmann.zbMATHGoogle Scholar
  30. Schoch, J., Staudt, P., and Setzer, T. (2017). Smart data selection and reduction for electric vehicle service analytics.CrossRefGoogle Scholar
  31. Schommer, C. (2008). An unified definition of data mining. Preprint arXiv:0809.2696Google Scholar
  32. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.CrossRefGoogle Scholar
  33. Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810.Google Scholar
  34. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550, 354–359.CrossRefGoogle Scholar
  35. Steins, K., Matinrad, N., & Granberg, T. (2019). Forecasting the demand for emergency medical services. In Proceedings of the 52nd Hawaii International Conference on System Sciences.Google Scholar
  36. Steuer, D., Hutterer, V., Korevaar, P., & Fromm, H. (2018). A similarity-based approach for the all-time demand prediction of new automotive spare parts. In: Proceedings of the 51st Hawaii International Conference on System Sciences Google Scholar
  37. Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: Continuing the evolution. Journal of the Academy of Marketing Science, 36(1), 1–10.CrossRefGoogle Scholar
  38. Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques (3rd ed., Vol. 54). Burlington, MA: Morgan KaufmannGoogle Scholar
  39. Wolff, C., Vössing, M., Schmitz, B., & Fromm, H. (2018). Towards a technician marketplace using capacity-based pricing. In Proceedings of the 51st Hawaii International Conference on System Sciences.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations