Skip to main content

Benchmarking a \((\mu +\lambda )\) Genetic Algorithm with Configurable Crossover Probability

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

Abstract

We investigate a family of \((\mu +\lambda )\) Genetic Algorithms (GAs) which creates offspring either from mutation or by recombining two randomly chosen parents. By scaling the crossover probability, we can thus interpolate from a fully mutation-only algorithm towards a fully crossover-based GA. We analyze, by empirical means, how the performance depends on the interplay of population size and the crossover probability.

Our comparison on 25 pseudo-Boolean optimization problems reveals an advantage of crossover-based configurations on several easy optimization tasks, whereas the picture for more complex optimization problems is rather mixed. Moreover, we observe that the “fast” mutation scheme with its are power-law distributed mutation strengths outperforms standard bit mutation on complex optimization tasks when it is combined with crossover, but performs worse in the absence of crossover.

We then take a closer look at the surprisingly good performance of the crossover-based \((\mu +\lambda )\) GAs on the well-known LeadingOnes benchmark problem. We observe that the optimal crossover probability increases with increasing population size \(\mu \). At the same time, it decreases with increasing problem dimension, indicating that the advantages of the crossover are not visible in the asymptotic view classically applied in runtime analysis. We therefore argue that a mathematical investigation for fixed dimensions might help us observe effects which are not visible when focusing exclusively on asymptotic performance bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The query complexity of finding a hidden permutation. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and Algorithms. LNCS, vol. 8066, pp. 1–11. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40273-9_1

    Chapter  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press Inc, Oxford (1996)

    MATH  Google Scholar 

  3. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the leadingones problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_1

    Chapter  Google Scholar 

  4. Buskulic, N., Doerr, C.: Maximizing drift is not optimal for solving OneMax. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 425–426. ACM (2019). http://arxiv.org/abs/1904.07818

  5. Pinto, E.C., Doerr, C.: A simple proof for the usefulness of crossover in black-box optimization. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 29–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_3

    Chapter  Google Scholar 

  6. Chicano, F., Sutton, A.M., Whitley, L.D., Alba, E.: Fitness probability distribution of bit-flip mutation. Evol. Comput. 23(2), 217–248 (2015)

    Article  Google Scholar 

  7. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput. 22(5), 720–732 (2018)

    Article  Google Scholar 

  8. Corus, D., Oliveto, P.S.: On the benefits of populations for the exploitation speed of standard steady-state genetic algorithms. Algorithmica 1–31 (2020). https://doi.org/10.1007/s00453-020-00743-1

  9. Haziza, D., Rapin, J.: HiPlot - high dimensional interactive plotting (2020). https://github.com/facebookresearch/hiplot

  10. Dang, D.C., et al.: Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput. 22(3), 484–497 (2017)

    Article  Google Scholar 

  11. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA (1975)

    Google Scholar 

  12. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theoret. Comput. Sci. 773, 115–137 (2019)

    Article  MathSciNet  Google Scholar 

  13. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  Google Scholar 

  14. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. Theoret. Comput. Sci. 425, 17–33 (2012)

    Article  MathSciNet  Google Scholar 

  15. Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., Theile, M.: More effective crossover operators for the all-pairs shortest path problem. Theoret. Comput. Sci. 471, 12–26 (2013)

    Article  MathSciNet  Google Scholar 

  16. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 777–784. ACM (2017)

    Google Scholar 

  17. Doerr, B., Winzen, C.: Black-box complexity: breaking the O(n logn) barrier of leadingOnes. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 205–216. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35533-2_18

    Chapter  Google Scholar 

  18. Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: a benchmarking and profiling tool for iterative optimization heuristics. arXiv e-prints:1810.05281, October 2018. https://arxiv.org/abs/1810.05281

  19. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88, 106027 (2019)

    Article  Google Scholar 

  20. Doerr, C., Ye, F., van Rijn, S., Wang, H., Bäck, T.: Towards a theory-guided benchmarking suite for discrete black-box optimization heuristics: profiling (1 + \(\lambda \)) EA variants on onemax and leadingones. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 951–958. ACM (2018)

    Google Scholar 

  21. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput. Oper. Res. 38(12), 1877–1896 (2011)

    Article  MathSciNet  Google Scholar 

  22. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc, Boston (1989)

    MATH  Google Scholar 

  23. Yoon, H.S., Moon, B.R.: An empirical study on the synergy of multiple crossover operators. IEEE Trans. Evol. Comput. 6(2), 212–223 (2002)

    Article  Google Scholar 

  24. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evol. Comput. 13, 413–440 (2005)

    Article  Google Scholar 

  25. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms–a proof that crossover really can help. Algorithmica 34, 47–66 (2002). https://doi.org/10.1007/s00453-002-0940-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is essential. Discrete Appl. Math. 149(1–3), 111–125 (2005)

    Article  MathSciNet  Google Scholar 

  27. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  28. Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-Boolean optimization. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 989–996. ACM (2011)

    Google Scholar 

  29. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012). https://doi.org/10.1007/s00453-012-9616-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-output sequences. Soft. Comput. 15(9), 1675–1687 (2011). https://doi.org/10.1007/s00500-010-0610-2

    Article  MATH  Google Scholar 

  31. Mironovich, V., Buzdalov, M.: Evaluation of heavy-tailed mutation operator on maximum flow test generation problem. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2017), Companion Material, pp. 1423–1426. ACM (2017)

    Google Scholar 

  32. Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform hill climbing? In: Proceedings of Neural Information Processing Systems Conference (NIPS 1993). Advances in Neural Information Processing Systems, vol. 6, pp. 51–58. Morgan Kaufmann (1993)

    Google Scholar 

  33. Murata, T., Ishibuchi, H.: Positive and negative combination effects of crossover and mutation operators in sequencing problems. In: Proceedings of Conference on Evolutionary Computation, pp. 170–175, May 1996

    Google Scholar 

  34. Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D.: On the effectiveness of crossover for migration in parallel evolutionary algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 1587–1594. ACM (2011)

    Google Scholar 

  35. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: Proceedings of National Conference on Artificial Intelligence, pp. 440–446. AAAI (1992)

    Google Scholar 

  36. Spears, W.M.: Crossover or mutation? In: Banzhaf, W. (ed.) Foundations of Genetic Algorithms, vol. 2, pp. 221–237. Elsevier, Amsterdam (1993)

    Google Scholar 

  37. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 1161–1167. ACM Press (2005)

    Google Scholar 

  38. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

    Article  Google Scholar 

  39. Sudholt, D.: How crossover speeds up building block assembly in genetic algorithms. Evol. Comput. 25(2), 237–274 (2017)

    Article  Google Scholar 

  40. Varadarajan, S., Whitley, D.: The massively parallel mixing genetic algorithm for the traveling salesman problem. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 872–879. ACM (2019)

    Google Scholar 

  41. Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably essential. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 1452–1459. ACM (2007)

    Google Scholar 

  42. Weise, T., Wu, Z.: Difficult features of combinatorial optimization problems and the tunable w-model benchmark problem for simulating them. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2018, Companion Material), pp. 1769–1776. ACM (2018)

    Google Scholar 

  43. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and exploitation without mutation: solving the Jump function in \(\theta (n)\) time. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 55–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_5

    Chapter  Google Scholar 

  44. Ye, F., Wang, H., Doerr, C., Bäck, T.: Experimental data sets for the study benchmarking a \((\mu +\lambda )\) genetic algorithm with configurable crossover probability, April 2020. https://doi.org/10.5281/zenodo.3753086

Download references

Acknowledgments

Our work was supported by the Chinese scholarship council (CSC No. 201706310143), by the Paris Ile-de-France Region, by ANR-11-LABX-0056-LMH (LabEx LMH), and by COST Action CA15140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furong Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, F., Wang, H., Doerr, C., Bäck, T. (2020). Benchmarking a \((\mu +\lambda )\) Genetic Algorithm with Configurable Crossover Probability. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics