Skip to main content

Runtime Analysis of a Heavy-Tailed \((1+(\lambda ,\lambda ))\) Genetic Algorithm on Jump Functions

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

Abstract

It was recently observed that the \((1+(\lambda ,\lambda ))\) genetic algorithm can comparably easily escape the local optimum of the jump functions benchmark. Consequently, this algorithm can optimize the jump function with jump size k in an expected runtime of only \(n^{(k + 1)/2}k^{-k/2}e^{O(k)}\) fitness evaluations (Antipov, Doerr, Karavaev (GECCO 2020)). This performance, however, was obtained with non-standard parameter setting depending on the jump size k.

To overcome this difficulty, we propose to choose two parameters of the \((1+(\lambda ,\lambda ))\) genetic algorithm randomly from a power-law distribution. Via a mathematical runtime analysis, we show that this algorithm with natural instance-independent choices of the power-law parameters on all jump functions with jump size at most n/4 has a performance close to what the best instance-specific parameters in the previous work obtained. This price for instance-independence can be made as small as an \(O(n\log (n))\) factor. Given the difficulty of the jump problem and the runtime losses from using mildly suboptimal fixed parameters (also discussed in this work), this appears to be a fair price.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The omitted proofs can be found in the preprint  [3].

References

  1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1268–1276. ACM (2020)

    Google Scholar 

  2. Antipov, D., Buzdalov, M., Doerr, B.: First steps towards a runtime analysis when starting with a good solution. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 560–573. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-030-58115-2_39

  3. Antipov, D., Doerr, B.: Runtime analysis of a heavy-tailed (1+(\(\lambda \), \(\lambda \))) genetic algorithm on jump functions. CoRR abs/2006.03523 (2020). https://arxiv.org/abs/2006.03523

  4. Antipov, D., Doerr, B., Karavaev, V.: A tight runtime analysis for the \({(1 + (\lambda ,\lambda ))}\) GA on LeadingOnes. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 169–182. ACM (2019)

    Google Scholar 

  5. Antipov, D., Doerr, B., Karavaev, V.: The \((1 + (\lambda ,\lambda ))\) GA is even faster on multimodal problems. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1259–1267. ACM (2020)

    Google Scholar 

  6. Buzdalov, M., Doerr, B.: Runtime analysis of the \({(1+(\lambda ,\lambda ))}\) genetic algorithm on random satisfiable 3-CNF formulas. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 1343–1350. ACM (2017)

    Google Scholar 

  7. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity mechanisms and crossover. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 645–652. ACM (2016)

    Google Scholar 

  8. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput. 22, 484–497 (2018)

    Article  Google Scholar 

  9. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_75

    Chapter  Google Scholar 

  10. Doerr, B.: A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1488–1496. ACM (2019)

    Google Scholar 

  11. Doerr, B.: Does comma selection help to cope with local optima? In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1304–1313. ACM (2020)

    Google Scholar 

  12. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the \({(1+(\lambda,\lambda ))}\) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

    Article  MathSciNet  Google Scholar 

  13. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimization: Provable performance gains through dynamic parameter choices. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation. NCS, pp. 271–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_6. https://arxiv.org/abs/1804.05650

    Chapter  MATH  Google Scholar 

  14. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based genetic algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 781–788. ACM (2013)

    Google Scholar 

  15. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  Google Scholar 

  16. Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for multi-valued decision variables. Algorithmica 80, 1732–1768 (2018)

    Article  MathSciNet  Google Scholar 

  17. Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k outperforms standard bit mutation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 824–834. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_77

    Chapter  Google Scholar 

  18. Doerr, B., Gießen, C., Witt, C., Yang, J.: The \({(1 + \lambda )}\) evolutionary algorithm with self-adjusting mutation rate. Algorithmica 81, 593–631 (2019)

    Article  MathSciNet  Google Scholar 

  19. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)

    Google Scholar 

  20. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1475–1482. ACM (2018)

    Google Scholar 

  21. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  22. Friedrich, T., Göbel, A., Quinzan, F., Wagner, M.: Evolutionary algorithms and submodular functions: benefits of heavy-tailed mutations. CoRR abs/1805.10902 (2018)

    Google Scholar 

  23. Friedrich, T., Göbel, A., Quinzan, F., Wagner, M.: Heavy-tailed mutation operators in single-objective combinatorial optimization. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_11

    Chapter  Google Scholar 

  24. Friedrich, T., Kötzing, T., Krejca, M.S., Nallaperuma, S., Neumann, F., Schirneck, M.: Fast building block assembly by majority vote crossover. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 661–668. ACM (2016)

    Google Scholar 

  25. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attraction with heavy-tailed mutation operators. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 293–300. ACM (2018)

    Google Scholar 

  26. Goldman, B.W., Punch, W.F.: Parameter-less population pyramid. In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 785–792. ACM (2014)

    Google Scholar 

  27. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic algorithm on jump functions. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 967–974. ACM (2018)

    Google Scholar 

  28. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34, 47–66 (2002)

    Article  MathSciNet  Google Scholar 

  29. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Foundations of Genetic Algorithms, FOGA 2011, pp. 181–192. ACM (2011)

    Google Scholar 

  30. Mambrini, A., Sudholt, D.: Design and analysis of schemes for adapting migration intervals in parallel evolutionary algorithms. Evol. Comput. 23, 559–582 (2015)

    Article  Google Scholar 

  31. Mironovich, V., Buzdalov, M.: Evaluation of heavy-tailed mutation operator on maximum flow test generation problem. In: Genetic and Evolutionary Computation Conference, GECCO 2017. Companion Material, pp. 1423–1426. ACM (2017)

    Google Scholar 

  32. Rowe, J.E., Aishwaryaprajna: the benefits and limitations of voting mechanisms in evolutionary optimisation. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 34–42. ACM (2019)

    Google Scholar 

  33. Wald, A.: Some generalizations of the theory of cumulative sums of random variables. Ann. Math. Stat. 16, 287–293 (1945)

    Article  MathSciNet  Google Scholar 

  34. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and exploitation without mutation: solving the jump function in \(\Theta (n)\) time. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 55–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_5

    Chapter  Google Scholar 

  35. Wu, M., Qian, C., Tang, K.: Dynamic mutation based pareto optimization for subset selection. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.) ICIC 2018. LNCS (LNAI), vol. 10956, pp. 25–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95957-3_4

    Chapter  Google Scholar 

  36. Ye, F., Wang, H., Doerr, C., Bäck, T.: Benchmarking a \((\mu +\lambda )\) genetic algorithm with configurable crossover probability. CoRR abs/2006.05889 (2020)

    Google Scholar 

Download references

Acknowledgements

This study was funded by RFBR and CNRS, project number 20-51-15009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Antipov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antipov, D., Doerr, B. (2020). Runtime Analysis of a Heavy-Tailed \((1+(\lambda ,\lambda ))\) Genetic Algorithm on Jump Functions. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics