Advertisement

Evolutionary Graph-Based V+E Optimization for Protection Against Epidemics

Conference paper
  • 427 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12270)

Abstract

Protection against spreading threats in networks gives rise to a variety of interesting optimization problems. Among others, vertex protection problems such as the Firefighter Problem and vaccination optimization problem can be tackled. Interestingly, in some cases a networked system can be made more resilient to threats, by changing its connectivity, which motivates the study of another type of optimization problems focused on adapting graph connectivity.

In this paper the above-mentioned approaches are combined, that is both vertex and edge protection is applied in order to stop the threat from spreading. Solutions to the proposed problem are evaluated using different cost functions for protected vertices and edges, motivated by real-life observations regarding the costs of epidemics control.

Instead of making decisions for each of the vertices and edges a decision model is used (based on rules or a neural network) with parameters optimized using an evolutionary algorithm. In the experiments the model using rules was found to perform better than the one based on a neural network.

Keywords

Disease prevention Epidemics control DPEC Combinatorial optimization Graph-based problems 

Notes

Acknowledgment

This work was supported by the Polish National Science Centre under grant no. 2015/19/D/HS4/02574. Calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl), grant No. 407.

References

  1. 1.
    Antonioni, A., Bullock, S., Tomassini, M.: REDS: an energy-constrained spatial social network model. In: Lipson, H., Sayama, H., Rieffel, J., Risi, S., Doursat, R. (eds.) ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems. MIT Press (2014)Google Scholar
  2. 2.
    Backer, J., Hagenaars, T., Nodelijk, G., van Roermund, H.: Vaccination against foot-and-mouth disease I: epidemiological consequences. Prev. Vet. Med. 107(1), 27–40 (2012)CrossRefGoogle Scholar
  3. 3.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  4. 4.
    Britton, T., Janson, S., Martin-Löf, A.: Graphs with specified degree distributions, simple epidemics, and local vaccination strategies. Adv. Appl. Probab. 39(4), 922–948 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burkholz, R., Leduc, M., Garas, A., Schweitzer, F.: Systemic risk in multiplex networks with asymmetric coupling and threshold feedback. Physica D 323–324, 64–72 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chekuri, C., Gupta, A., Kumar, A., Naor, J., Raz, D.: Building edge-failure resilient networks. Algorithmica 43(1), 17–41 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, C., et al.: Node immunization on large graphs: theory and algorithms. IEEE Trans. Knowl. Data Eng. 28(1), 113–126 (2016)CrossRefGoogle Scholar
  8. 8.
    Chen, R.L.Y., Phillips, C.A.: k-edge failure resilient network design. Electron. Notes Discrete Math. 41, 375–382 (2013)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Agarwal, R.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf. 26, 30–45 (1996)Google Scholar
  11. 11.
    Fleischer, M.: The measure of pareto optima. Applications to multi-objective metaheuristics. In: Second International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003, pp. 519–533. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Forbes, C., Evans, M., Hastings, N., Peacock, B.: Geometric distribution. In: Statistical Distributions, Chap. 23, pp. 114–116. Wiley (2010)Google Scholar
  13. 13.
    Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing design for pandemic influenza. Emerg. Infect. Dis. 12(11), 1671–1681 (2006)CrossRefGoogle Scholar
  14. 14.
    Hartnell, B.: Firefighter! An application of domination. In: 20th Conference on Numerical Mathematics and Computing (1995)Google Scholar
  15. 15.
    Kozen, D.C.: Depth-first and breadth-first search. In: The Design and Analysis of Algorithms, pp. 19–24. Springer, New York (1992)Google Scholar
  16. 16.
    Ladley, D.: Contagion and risk-sharing on the inter-bank market. J. Econ. Dyn. Control 37(7), 1384–1400 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)CrossRefGoogle Scholar
  18. 18.
    Martcheva, M.: Introduction to epidemic modeling. In: An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, vol. 61, pp. 9–31. Springer Science+Business Media, New York (2015)Google Scholar
  19. 19.
    Matthews, L.R., Gounaris, C.E., Kevrekidis, I.G.: Designing networks with resiliency to edge failures using two-stage robust optimization. Eur. J. Oper. Res. 279(3), 704–720 (2019)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maulana, A., Kefalas, M., Emmerich, M.T.M.: Immunization of networks using genetic algorithms and multiobjective metaheuristics. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)Google Scholar
  21. 21.
    Michalak, K.: Auto-adaptation of genetic operators for multi-objective optimization in the firefighter problem. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 484–491. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10840-7_58CrossRefGoogle Scholar
  22. 22.
    Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the multiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 184–196. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16468-7_16CrossRefGoogle Scholar
  23. 23.
    Michalak, K.: Reducing systemic risk in multiplex networks using evolutionary optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 289–290. ACM, New York (2017)Google Scholar
  24. 24.
    Michalak, K.: Surrogate-based optimization for reduction of contagion susceptibility in financial systems. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1266–1274. ACM, New York (2019)Google Scholar
  25. 25.
    Michalak, K., Knowles, J.D.: Simheuristics for the multiobjective nondeterministic firefighter problem in a time-constrained setting. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 248–265. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31153-1_17CrossRefGoogle Scholar
  26. 26.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tornatore, E., Vetro, P., Buccellato, S.M.: SIVR epidemic model with stochastic perturbation. Neural Comput. Appl. 24(2), 309–315 (2012).  https://doi.org/10.1007/s00521-012-1225-6CrossRefGoogle Scholar
  28. 28.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Information Technologies, Faculty of ManagementWrocław University of EconomicsWrocławPoland

Personalised recommendations