Skip to main content

A New Paradigm in Interactive Evolutionary Multiobjective Optimization

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Abstract

Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving multiobjective optimization problems in an interactive manner by using multiple scalarization functions to map vectors in the objective space to a new, so-called preference incorporated space (PIS). In this way, the original problem is converted into a new multiobjective optimization problem with typically fewer objectives in the PIS. This mapping enables a modular incorporation of decision maker’s preferences to convert any evolutionary algorithm to an interactive one, where preference information is directing the solution process. Advantages of optimizing in this new space are discussed and the idea is demonstrated with two interactive evolutionary algorithms: IOPIS/RVEA and IOPIS/NSGA-III. According to the experiments conducted, the new algorithms provide solutions that are better in quality as compared to those of state-of-the-art evolutionary algorithms and their variants where preference information is incorporated in the original objective space. Furthermore, the promising results require fewer function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    = 3 (problems) * 7 (objectives) * 4 (generations per iteration) * 4 (iterations).

  2. 2.

    = 9 (problems) * 7 (objectives) * 4 (iterations).

References

  1. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. In: Hurson, A.R. (ed.) Advances in Computers, vol. 98, pp. 141–207. Elsevier (2015). (Chapter four)

    Google Scholar 

  2. Buchanan, J.T.: A naïve approach for solving MCDM problems: the GUESS method. J. Oper. Res. Soc. 48(2), 202–206 (1997)

    Article  Google Scholar 

  3. Buchanan, J., Gardiner, L.: A comparison of two reference point methods in multiple objective mathematical programming. Eur. J. Oper. Res. 149(1), 17–34 (2003)

    Article  MathSciNet  Google Scholar 

  4. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE (2002)

    Google Scholar 

  8. Deb, K., Miettinen, K.: Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search. In: Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. LNE, vol. 634, pp. 339–354. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04045-0_29

    Chapter  MATH  Google Scholar 

  9. Deb, K., Saxena, D.: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of the World Congress on Computational Intelligence (WCCI 2006), pp. 3352–3360 (2006)

    Google Scholar 

  10. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 635–642. ACM, New York (2006)

    Google Scholar 

  11. Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J.: Pareto navigator for interactive nonlinear multiobjective optimization. OR Spectrum 32(1), 211–227 (2010). https://doi.org/10.1007/s00291-008-0151-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms. In: Proceeding of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

    Google Scholar 

  13. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  14. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2419–2426 (2008)

    Google Scholar 

  15. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition multiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018)

    Article  Google Scholar 

  16. Luque, M., Ruiz, F., Miettinen, K.: Global formulation for interactive multiobjective optimization. OR Spectrum 33(1), 27–48 (2011). https://doi.org/10.1007/s00291-008-0154-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and taxonomy of interactive optimization methods in operations research. ACM Trans. Interact. Intell. Syst. 5(3), 1–43 (2015)

    Article  Google Scholar 

  18. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999). https://doi.org/10.1007/978-1-4615-5563-6

    Book  MATH  Google Scholar 

  19. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective optimization methods. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple Criteria Decision Analysis. ISORMS, vol. 233, pp. 927–976. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_22

    Chapter  Google Scholar 

  20. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spectrum 24(2), 193–213 (2002). https://doi.org/10.1007/s00291-001-0092-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimization. Eur. J. Oper. Res. 170(3), 909–922 (2006)

    Article  Google Scholar 

  22. Nakayama, H., Sawaragi, Y.: Satisficing trade-off method for multiobjective programming. In: Grauer, M., Wierzbicki, A.P. (eds.) Interactive Decision Analysis. LNE, vol. 229, pp. 113–122. Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-662-00184-4_13

    Chapter  Google Scholar 

  23. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary multiobjective optimization method: interactive WASF-GA. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_17

    Chapter  Google Scholar 

  24. Ruiz, F., Luque, M., Miettinen, K.: Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization. Ann. Oper. Res. 197(1), 47–70 (2012). https://doi.org/10.1007/s10479-010-0831-x

    Article  MathSciNet  MATH  Google Scholar 

  25. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Elsevier, Amsterdam (1985)

    MATH  Google Scholar 

  26. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009)

    Article  Google Scholar 

  27. Vesikar, Y., Deb, K., Blank, J.: Reference point based NSGA-III for preferred solutions. In: Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1587–1594 (2018)

    Google Scholar 

  28. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. LNE, vol. 177, pp. 468–486. Springer, Heidelberg (1980). https://doi.org/10.1007/978-3-642-48782-8_32

    Chapter  Google Scholar 

  29. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math. Model. 3(5), 391–405 (1982)

    Article  MathSciNet  Google Scholar 

  30. Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., Liu, B.: Interactive multiobjective optimization: a review of the state-of-the-art. IEEE Access 6, 41256–41279 (2018)

    Article  Google Scholar 

  31. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  32. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Academy of Finland (grant numbers 322221 and 311877). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Singh Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saini, B.S., Hakanen, J., Miettinen, K. (2020). A New Paradigm in Interactive Evolutionary Multiobjective Optimization. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics