Abstract
Propositional satisfiability (SAT) is a prominent problem in artificial intelligence with many important applications. Stochastic local search (SLS) is a well-known approach for solving SAT and known to achieve excellent performance on randomly generated, satisfiable instances. However, SLS solvers for SAT are usually ineffective in solving application instances. Here, we propose a highly configurable SLS solver dubbed PbO-CCSAT, which leverages a powerful technique known as configuration checking (CC) in combination with the automatic algorithm design paradigm of programming by optimisation (PbO). Our PbO-CCSAT solver exposes a large number of design choices, which are automatically configured to optimise the performance for specific classes of SAT instances. We present extensive empirical results showing that our PbO-CCSAT solver significantly outperforms state-of-the-art SLS solvers on SAT instances from many applications, and further show that PbO-CCSAT is complementary to state-of-the-art complete solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new probability distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_3
Balyo, T., Heule, M.J.H., Järvisalo, M. (eds.): Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions. University of Helsinki (2017)
Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the SAT competition 2017. In: Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions, pp. 14–15 (2017)
Cai, S., Luo, C., Su, K.: Scoring functions based on second level score for k-SAT with long clauses. J. Artif. Intell. Res. 51, 413–441 (2014)
Cai, S., Su, K.: Configuration checking with aspiration in local search for SAT. In: 2012 Proceedings of AAAI, pp. 434–440 (2012)
Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking and subscore. Artif. Intell. 204, 75–98 (2013)
Gableske, O.: On the interpolation between product-based message passing heuristics for SAT. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 293–308. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_22
Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for SAT. In: 1993 Proceedings of AAAI, pp. 28–33 (1993)
Giráldez-Cru, J., Levy, J.: Generating SAT instances with community structure. Artif. Intell. 238, 119–134 (2016)
Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean triples problem via Cube-and-Conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15
Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In: 1999 Proceedings of AAAI, pp. 661–666 (1999)
Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40
Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight redistribution in local search for SAT. In: 2005 Proceedings of CP, pp. 772–776 (2005)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automatically building local search SAT solvers from components. Artif. Intell. 232, 20–42 (2016)
Li, C.M., Li, Yu.: Satisfying versus falsifying in local search for satisfiability. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 477–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_43
Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_9
Luo, C., Cai, S., Su, K., Wu, W.: Clause states based configuration checking in local search for satisfiability. IEEE Trans. Cybern. 45(5), 1014–1027 (2015)
Luo, C., Cai, S., Wu, W., Su, K.: Double configuration checking in stochastic local search for satisfiability. In: 2014 Proceedings of AAAI, pp. 2703–2709 (2014)
Luo, C., Hoos, H.H., Cai, S., Lin, Q., Zhang, H., Zhang, D.: Local search with efficient automatic configuration for minimum vertex cover. In: 2019 Proceedings of IJCAI, pp. 1297–1304 (2019)
Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization approach for CDCL SAT solvers. In: 2017 Proceedings of IJCAI, pp. 703–711 (2017)
McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search. In: 1997 Proceedings of AAAI, pp. 321–326 (1997)
Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_7
Newman, N., Fréchette, A., Leyton-Brown, K.: Deep optimization for spectrum repacking. Commun. ACM 61(1), 97–104 (2018)
Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017). https://doi.org/10.1007/s10703-017-0295-6
Oh, C.: COMiniSatPS Pulsar and GHackCOMSPS. In: Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions, pp. 12–13 (2017)
Pham, D.N., Duong, T., Sattar, A.: Trap avoidance in local search using pseudo-conflict learning. In: 2012 Proceedings of AAAI, pp. 542–548 (2012)
Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisfiability Boolean Mode. Comput. 7(4), 139–144 (2011)
Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: 1992 Proceedings of AAAI, pp. 440–446 (1992)
Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause weighting for SAT. In: 2004 Proceedings of AAAI, pp. 191–196 (2004)
Yolcu, E., Póczos, B.: Learning local search heuristics for Boolean satisfiability. In: 2019 Proceedings of NeurIPS, pp. 7990–8001 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Luo, C., Hoos, H., Cai, S. (2020). PbO-CCSAT: Boosting Local Search for Satisfiability Using Programming by Optimisation. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-58112-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58111-4
Online ISBN: 978-3-030-58112-1
eBook Packages: Computer ScienceComputer Science (R0)