Skip to main content

PbO-CCSAT: Boosting Local Search for Satisfiability Using Programming by Optimisation

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Included in the following conference series:

Abstract

Propositional satisfiability (SAT) is a prominent problem in artificial intelligence with many important applications. Stochastic local search (SLS) is a well-known approach for solving SAT and known to achieve excellent performance on randomly generated, satisfiable instances. However, SLS solvers for SAT are usually ineffective in solving application instances. Here, we propose a highly configurable SLS solver dubbed PbO-CCSAT, which leverages a powerful technique known as configuration checking (CC) in combination with the automatic algorithm design paradigm of programming by optimisation (PbO). Our PbO-CCSAT solver exposes a large number of design choices, which are automatically configured to optimise the performance for specific classes of SAT instances. We present extensive empirical results showing that our PbO-CCSAT solver significantly outperforms state-of-the-art SLS solvers on SAT instances from many applications, and further show that PbO-CCSAT is complementary to state-of-the-art complete solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/chuanluocs/PbO-CCSAT.

References

  1. Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new probability distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_3

    Chapter  MATH  Google Scholar 

  2. Balyo, T., Heule, M.J.H., Järvisalo, M. (eds.): Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions. University of Helsinki (2017)

    Google Scholar 

  3. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the SAT competition 2017. In: Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions, pp. 14–15 (2017)

    Google Scholar 

  4. Cai, S., Luo, C., Su, K.: Scoring functions based on second level score for k-SAT with long clauses. J. Artif. Intell. Res. 51, 413–441 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cai, S., Su, K.: Configuration checking with aspiration in local search for SAT. In: 2012 Proceedings of AAAI, pp. 434–440 (2012)

    Google Scholar 

  6. Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking and subscore. Artif. Intell. 204, 75–98 (2013)

    Article  Google Scholar 

  7. Gableske, O.: On the interpolation between product-based message passing heuristics for SAT. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 293–308. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_22

    Chapter  MATH  Google Scholar 

  8. Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for SAT. In: 1993 Proceedings of AAAI, pp. 28–33 (1993)

    Google Scholar 

  9. Giráldez-Cru, J., Levy, J.: Generating SAT instances with community structure. Artif. Intell. 238, 119–134 (2016)

    Article  MathSciNet  Google Scholar 

  10. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean triples problem via Cube-and-Conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15

    Chapter  MATH  Google Scholar 

  11. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In: 1999 Proceedings of AAAI, pp. 661–666 (1999)

    Google Scholar 

  12. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

    Article  Google Scholar 

  13. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  14. Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight redistribution in local search for SAT. In: 2005 Proceedings of CP, pp. 772–776 (2005)

    Google Scholar 

  15. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automatically building local search SAT solvers from components. Artif. Intell. 232, 20–42 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, C.M., Li, Yu.: Satisfying versus falsifying in local search for satisfiability. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 477–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_43

    Chapter  Google Scholar 

  17. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_9

    Chapter  MATH  Google Scholar 

  18. Luo, C., Cai, S., Su, K., Wu, W.: Clause states based configuration checking in local search for satisfiability. IEEE Trans. Cybern. 45(5), 1014–1027 (2015)

    Google Scholar 

  19. Luo, C., Cai, S., Wu, W., Su, K.: Double configuration checking in stochastic local search for satisfiability. In: 2014 Proceedings of AAAI, pp. 2703–2709 (2014)

    Google Scholar 

  20. Luo, C., Hoos, H.H., Cai, S., Lin, Q., Zhang, H., Zhang, D.: Local search with efficient automatic configuration for minimum vertex cover. In: 2019 Proceedings of IJCAI, pp. 1297–1304 (2019)

    Google Scholar 

  21. Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization approach for CDCL SAT solvers. In: 2017 Proceedings of IJCAI, pp. 703–711 (2017)

    Google Scholar 

  22. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search. In: 1997 Proceedings of AAAI, pp. 321–326 (1997)

    Google Scholar 

  23. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_7

    Chapter  Google Scholar 

  24. Newman, N., Fréchette, A., Leyton-Brown, K.: Deep optimization for spectrum repacking. Commun. ACM 61(1), 97–104 (2018)

    Article  Google Scholar 

  25. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017). https://doi.org/10.1007/s10703-017-0295-6

    Article  MATH  Google Scholar 

  26. Oh, C.: COMiniSatPS Pulsar and GHackCOMSPS. In: Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions, pp. 12–13 (2017)

    Google Scholar 

  27. Pham, D.N., Duong, T., Sattar, A.: Trap avoidance in local search using pseudo-conflict learning. In: 2012 Proceedings of AAAI, pp. 542–548 (2012)

    Google Scholar 

  28. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisfiability Boolean Mode. Comput. 7(4), 139–144 (2011)

    Article  MathSciNet  Google Scholar 

  29. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: 1992 Proceedings of AAAI, pp. 440–446 (1992)

    Google Scholar 

  30. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause weighting for SAT. In: 2004 Proceedings of AAAI, pp. 191–196 (2004)

    Google Scholar 

  31. Yolcu, E., Póczos, B.: Learning local search heuristics for Boolean satisfiability. In: 2019 Proceedings of NeurIPS, pp. 7990–8001 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, C., Hoos, H., Cai, S. (2020). PbO-CCSAT: Boosting Local Search for Satisfiability Using Programming by Optimisation. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics