Skip to main content

Moldauer’s Sum Rule Implies Superradiance in Compound Nuclear Reactions

  • Conference paper
  • First Online:
Compound-Nuclear Reactions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 254))

  • 487 Accesses

Abstract

We apply Moldauer’s “sum rule for resonance reactions” to compute the neutron transmission coefficients in the resolved and unresolved resonance regions, allowing a direct comparison with the transmission coefficients computed using an optical model potential. For nuclei for which there are no measured resonances, our approach provides a scheme to predict the average neutron resonance parameters directly from the optical model and level densities. Our approach is valid in both the strong and weak coupling limits (i.e., any value of average spacing D and average width \(\overline {\varGamma }\)). Finally, our approach suggests that superradiance, that is, the quantum chaotic enhancement of certain channels, may be a common phenomenon in nuclear collisions and our approach suggests why it has been previously overlooked. We apply our approach to neutron reactions on the closed shell 90Zr nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Phys. Rep. 129, 367 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. P.A. Moldauer, Phys. Rev. C 11, 426 (1975)

    Article  ADS  Google Scholar 

  3. A.M. Lane, J.E. Lynn, Proc. Phys. Soc. A70, 557 (1957); F.H. Fröhner, JEFF Report 18 (2000)

    Article  ADS  Google Scholar 

  4. G.R. Satchler Introduction to Nuclear Reactions (Wiley, New York, 1980); P. Fröbrich, R. Lipperheide, Theory of Nuclear Reactions (Oxford Studies in Nuclear Physics) (Clarendon Press, Oxford, 1996) ISBN-13: 978-0198537830

    Google Scholar 

  5. D.A. Brown, G.P.A. Nobre, M.W. Herman, Phys. Rev. C 98, 024616 (2018)

    Article  ADS  Google Scholar 

  6. G. Noguere et al., EPJ Web Conf. 146, 02036 (2017)

    Article  Google Scholar 

  7. M. Simonius, Phys. Lett. 52B, 279 (1974); P.A. Moldauer, Phys. Rev. 157, 907 (1967)

    Article  ADS  Google Scholar 

  8. P.A. Moldauer, Phys. Rev. Lett. 19, 1047 (1967)

    Article  ADS  Google Scholar 

  9. S.F. Mughabghab, Atlas of Neutron Resonances: Resonance Parameters and Neutron Cross Sections, Z = 1-100 (Elsevier, Amsterdam 2006); D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Google Scholar 

  10. J. Raynal, ECIS code, distributed by the NEA DATA Bank, Paris, France (2003)

    Google Scholar 

  11. R. Capote et al., Nucl. Data Sheets 110 (12), 3107 (2009)

    Article  ADS  Google Scholar 

  12. Y. Alhassid et al, Phys. Rev. C 99, 024621 (2019)

    Article  ADS  Google Scholar 

  13. N. Auerbach, V. Zelevinsky, Rep. Prog. Phys. 74 106301 (2011)

    Article  ADS  Google Scholar 

  14. M.O. Scully, A.A. Svidzinsky, Science 325(5947), 1510–1511 (2009). https://doi.org/10.1126/science.1176695

    Article  Google Scholar 

  15. M. Herman, R. Capote, B.V. Carlson, et al., Nucl. Data Sheets 108, 2655 (2007)

    Article  ADS  Google Scholar 

  16. N. Otuka et al., Nucl. Data Sheets 120, 272 (2014); V.V. Zerkin, B. Pritychenko, Nucl. Inst. Meth. A 888, 31 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02- 98CH10886 with Brookhaven Science Associates, LLC. Work at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Agency of the U.S. Department of Energy under Contract No. DE-AC52- 06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brown, D., Herman, M., Nobre, G. (2021). Moldauer’s Sum Rule Implies Superradiance in Compound Nuclear Reactions. In: Escher, J., et al. Compound-Nuclear Reactions . Springer Proceedings in Physics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-030-58082-7_7

Download citation

Publish with us

Policies and ethics