Skip to main content

Capabilities of the NIFFTE FissionTPC

  • Conference paper
  • First Online:
Compound-Nuclear Reactions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 254))

  • 486 Accesses

Abstract

The NIFFTE fission Time Projection Chamber has been used to measure a number of cross section ratios and fission anisotropies over the past several years. Track information from fully reconstructed three-dimensional ionization profiles have allowed for sophisticated cross section analyses that were not previously possible. Initial measurements disregarded the shape of recorded ionization profiles, which should contain particle identification information. The utility of these charge profiles will be discussed, along with future measurements they might enable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Aliberti, G. Palmiotti, M. Salvatores, T. Kim, T. Taiwo, M. Anitescu, I. Kodeli, E. Sartori, J. Bosq, J. Tommasi, Ann. Nucl. Energy 33(8), 700 (2006). https://doi.org/10.1016/j.anucene.2006.02.003. http://www.sciencedirect.com/science/article/pii/S0306454906000296

  2. G. Aliberti, W. Yang, R. McKnight, Nucl. Data Sheets 109(12), 2745 (2008). https://doi.org/10.1016/j.nds.2008.11.004. http://www.sciencedirect.com/science/article/pii/S0090375208000926

  3. M. Salvatores, G. Palmiotti, G. Aliberti, H. Hiruta, R. McKnight, P. Obložinský, W. Yang, Nucl. Data Sheets 109(12), 2725 (2008). https://doi.org/10.1016/j.nds.2008.11.001. http://www.sciencedirect.com/science/article/pii/S0090375208000896

  4. S.A. Wender, S. Balestrini, A. Brown, R.C. Haight, C.M. Laymon, T.M. Lee, P.W. Lisowski, W. McCorkle, R.O. Nelson, W. Parker, N.W. Hill, Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 336(12), 226 (1993). https://doi.org/10.1016/0168-9002(93)91102-S. http://www.sciencedirect.com/science/article/pii/016890029391102S

  5. P. Salvador-Castiñeira, T. Bryś, R. Eykens, F.J. Hambsch, A. Göök, A. Moens, S. Oberstedt, G. Sibbens, D. Vanleeuw, M. Vidali, C. Pretel, Phys. Rev. C 92, 014620 (2015). https://doi.org/10.1103/PhysRevC.92.014620. http://link.aps.org/doi/10.1103/PhysRevC.92.014620

  6. P. Salvador-Castiñeira, T. Bryś, R. Eykens, F.J. Hambsch, A. Göök, A. Moens, S. Oberstedt, G. Sibbens, D. Vanleeuw, M. Vidali, C. Pretel, Phys. Rev. C 92, 044606 (2015). https://doi.org/10.1103/PhysRevC.92.044606. http://link.aps.org/doi/10.1103/PhysRevC.92.044606

  7. M. Heffner, D. Asner, R. Baker, J. Baker, S. Barrett, C. Brune, J. Bundgaard, E. Burgett, D. Carter, M. Cunningham, et al., Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 759, 50 (2014). https://doi.org/10.1016/j.nima.2014.05.057. http://www.sciencedirect.com/science/article/pii/S0168900214005890

  8. R.J. Casperson, et al., Phys. Rev. C 97, 034618 (2018). https://doi.org/10.1103/PhysRevC.97.034618. https://link.aps.org/doi/10.1103/PhysRevC.97.034618

  9. J.F. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Methods Phys. Res. B Beam Interactions Mater. Atoms 268(1112), 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091. http://www.sciencedirect.com/science/article/pii/S0168583X10001862. 19th International Conference on Ion Beam Analysis

  10. G. Knyazheva, S. Khlebnikov, E. Kozulin, T. Kuzmina, V. Lyapin, M. Mutterer, J. Perkowski, W. Trzaska, Nucl. Instrum. Methods Phys. Res. B Beam Interactions Mater. Atoms 248(1), 7 (2006). https://doi.org/10.1016/j.nimb.2006.04.071. http://www.sciencedirect.com/science/article/pii/S0168583X06005453

Download references

Acknowledgements

This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The neutron beam for this work was provided by LANSCE, which is funded by the U.S. Department of Energy and operated by Los Alamos National Security, LLC, under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Casperson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casperson, R.J. (2021). Capabilities of the NIFFTE FissionTPC. In: Escher, J., et al. Compound-Nuclear Reactions . Springer Proceedings in Physics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-030-58082-7_38

Download citation

Publish with us

Policies and ethics