Skip to main content

Numerical Simulations of Marble Sulfation

  • Conference paper
  • First Online:
Mathematical Modeling in Cultural Heritage

Part of the book series: Springer INdAM Series ((SINDAMS,volume 41))

Abstract

In this chapter we describe some computational techniques to approximate the evolution of gypsum crusts on marble monuments. Mathematical models of this phenomenon are typically based on partial differential equations and here we deliberately consider a quite simple one, so that we can focus on the numerical techniques that can be used to overcome the main difficulties of this kind of computations, namely the efficiency of the timestepping procedure and the complexity of the computational domains in real-world cases. First, the design of optimal preconditioners for Cartesian grid discretizations is reviewed. Then, we illustrate a technique to deal with non Cartesian domains by described via a level-set function. The chapter ends with a study of the influence of the surface curvature on the growth of the gypsum crust, that generalizes earlier analytical one-dimensional results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Turo, F., Proietti, C., Screpanti, A., Fornasier, M., Cionni, I., Favero, G., De Marco, A.: Impacts of air pollution on cultural heritage corrosion at european level: what has been achieved and what are the future scenarios. Environ. Pollut. 218, 586–594 (2016). https://doi.org/10.1016/j.envpol.2016.07.042

    Article  Google Scholar 

  2. Saba, M., Quiñones-Bolaños, E., Barbosa López, A.: A review of the mathematical models used for simulation of calcareous stone deterioration in historical buildings. Atmos. Environ. 180, 156–166 (2018). https://doi.org/10.1016/j.atmosenv.2018.02.043

    Article  Google Scholar 

  3. Aregba Driollet, D., Diele, F., Natalini, R.: A mathematical model for the SO2 aggression to calcium carbonate stones: numerical approximation and asymptotic analysis. SIAM J. Appl. Math. 64(5), 1636–1667 (2004)

    Article  MathSciNet  Google Scholar 

  4. Alì, G., Furuholt, V., Natalini, R., Torcicollo, I.: A mathematical model of sulphite chemical aggression of limestones with high permeability. Part i. modeling and qualitative analysis. Transp. Porous Media 69(1), 109–122 (2007). https://doi.org/10.1007/s11242-006-9067-2

    Article  Google Scholar 

  5. Bonetti, E., Cavaterra, C., Freddi, F., Grasselli, M., Natalini, R.: A nonlinear model for marble sulphation including surface rugosity: theoretical and numerical results. Comm. Pure Appl. Anal. 18(2), 977–998 (2019). https://doi.org/10.3934/cpaa.2019048

    Article  MathSciNet  Google Scholar 

  6. Clarelli, F., Fasano, A., Natalini, R.: Mathematics and monument conservation: free boundary models of marble sulfation. SIAM J. Appl. Math. 69(1), 149–168 (2008). https://doi.org/10.1137/070695125

    Article  MathSciNet  Google Scholar 

  7. Nikolopoulos, C.: Mathematical modelling of a mushy region formation during sulphation of calcium carbonate. Netw. Heterog. Media 9(4), 635–654 (2014). https://doi.org/10.3934/nhm.2014.9.635

    Article  MathSciNet  Google Scholar 

  8. Giavarini, C., Santarelli, M., Natalini, R., Freddi, F.: A non-linear model of sulphation of porous stones: Numerical simulations and preliminary laboratory assessments. J. Cult. Herit. 9(1), 14–22 (2008). https://doi.org/10.1016/j.culher.2007.12.001

    Article  Google Scholar 

  9. Semplice, M.: Preconditioned implicit solvers for nonlinear PDEs in monument conservation. SIAM J. Sci. Comput. 32(5), 3071–3091 (2010)

    Article  MathSciNet  Google Scholar 

  10. Donatelli, M., Semplice, M., Serra Capizzano, S.: AMG preconditioning for nonlinear degenerate parabolic equations on nonuniform grids with application to monument degradation. Appl. Numer. Math. 68, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  11. Coco, A., Semplice, M., Serra Capizzano, S.: A level-set multigrid technique for nonlinear diffusion in the numerical simulation of marble degradation under chemical pollutants. Appl. Math. Comput. 386, 125503 (2020). https://doi.org/10.1016/j.amc.2020.125503

    MathSciNet  Google Scholar 

  12. Donatelli, M., Semplice, M., Serra Capizzano, S.: Analysis of multigrid preconditioning for implicit PDE solvers for degenerate parabolic equations. SIAM J. Matrix Anal. 32(4), 1125–1148 (2011)

    Article  MathSciNet  Google Scholar 

  13. Aricò, A., Donatelli, M., Serra Capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26(1), 186–214 (2004). https://doi.org/10.1137/S0895479803421987

    Article  MathSciNet  Google Scholar 

  14. Garoni, C., Serra Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. I. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53679-8

  15. Garoni, C., Serra Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, vol. II. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02233-4

  16. Trottemberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic, Cambridge (2000)

    Google Scholar 

  17. Coco, A., Russo, G.: Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface. J. Comput. Phys. 361, 299–330 (2018)

    Article  MathSciNet  Google Scholar 

  18. Coco, A., Currenti, G., Del Negro, C., Russo, G.: A second order finite-difference ghost-point method for elasticity problems on unbounded domains with applications to volcanology. Commun. Comput. Phys. 16(4), 983–1009 (2014)

    Article  MathSciNet  Google Scholar 

  19. Coco, A., Russo, G.: Finite-difference ghost-point multigrid methods on cartesian grids for elliptic problems in arbitrary domains. J. Comput. Phys. 241, 464–501 (2013)

    Article  MathSciNet  Google Scholar 

  20. Skoulikidis, T., Papakonstantinou-Ziotis, P.: Mechanism of sulphation by atmospheric SO2 of the limestones and marbles of the ancient monuments and statues: I. observations in situ (Acropolis) and laboratory measurements. Brit. Corros. J. 16(2), 63–69 (1981)

    Google Scholar 

  21. Merriman, B., Bence, J.K., Osher, S.: Diffusion Generated Motion by Mean Curvature. Department of Mathematics, University of California, Los Angeles (1992)

    Google Scholar 

  22. Merriman, B., Ruuth, S.J.: Diffusion generated motion of curves on surfaces. J. Comput. Phys. 225(2), 2267–2282 (2007)

    Article  MathSciNet  Google Scholar 

  23. Esedog, S., Tsai, Y.H.R., et al.: Threshold dynamics for the piecewise constant mumford–shah functional. J. Comput. Phys. 211(1), 367–384 (2006)

    Article  MathSciNet  Google Scholar 

  24. Clarelli, F., De Filippo, B., Natalini, R.: Mathematical model of copper corrosion. Appl. Math. Model. 38(19-20), 4804–4816 (2014). https://doi.org/10.1016/j.apm.2014.03.040

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work has been partly supported by INdAM GNCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Semplice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coco, A., Donatelli, M., Semplice, M., Serra Capizzano, S. (2021). Numerical Simulations of Marble Sulfation. In: Bonetti, E., Cavaterra, C., Natalini, R., Solci, M. (eds) Mathematical Modeling in Cultural Heritage. Springer INdAM Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-58077-3_7

Download citation

Publish with us

Policies and ethics