Skip to main content

Chemomechanical Degradation of Monumental Stones: Preliminary Results

  • Conference paper
  • First Online:
Mathematical Modeling in Cultural Heritage

Part of the book series: Springer INdAM Series ((SINDAMS,volume 41))

Abstract

The degradation of monumental stones resulting from the mutual interaction between mechanical actions and environment/pollution conditions is investigated here. In particular, the stone degradation is estimated as a function of the environmental conditions and the prediction of damaging phenomena, which can compromise permanently the fruition of monuments. This is done through a macroscopic phenomenological model which accounts for the main aspects of the problem: the chemical reaction and the mechanical behavior of stones. The sulphation reaction and the diffusion of the pollutant agents are described by suitable differential equations coupled with a variational formulation of fracture mechanics. The proposed model permits to evaluate how much aggressive atmospheric agents contribute to the decay of the mechanical properties of the stones as well as to establish the impact of the synergic chemical aggression and stress state. The latter is also influenced by the chemical reaction and by the evolving mechanical properties of the material. The main features of this approach are illustrated by specific numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhyankar, S., Brown, J., Constantinescu, E.M., Ghosh, D., Smith, B.F., Zhang, H.: PETSc/TS: a modern scalable ODE/DAE solver library (2018). arXiv preprint arXiv:180601437

    Google Scholar 

  2. Alessi, R., Freddi, F.: Phase-field modelling of failure in hybrid laminates. Compos. Struct. 181, 9–25 (2017)

    Article  Google Scholar 

  3. Alì, G., Furuholt, V., Natalini, R., Torcicollo, I.: A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis. Transp. Porous Media 69(1), 109–122 (2007)

    Article  Google Scholar 

  4. Alì, G., Furuholt, V., Natalini, R., Torcicollo, I.: A mathematical model of sulphite chemical aggression of limestones with high permeability. Part II: numerical approximation. Transp. Porous Media 69(2), 175–188 (2007)

    Google Scholar 

  5. Ambrosio, L., Tortorelli, V.M. Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  Google Scholar 

  6. Amoroso, G., Fassina, V.: Stone decay and conservation: atmospheric pollution, cleaning, consolidation, and protection. Materials Science Monographs. Elsevier, Amsterdam (1983)

    Google Scholar 

  7. Aregba-Driollet, D., Diele, F., Natalini, R.: A mathematical model for the sulphur dioxide aggression to calcium carbonate stones: numerical approximation and asymptotic analysis. SIAM J. Appl. Math. 64(5), 1636–1667 (2004)

    Article  MathSciNet  Google Scholar 

  8. Benavente, D., Cultrone, G.G.H.: The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones. Eur. J. Mineral. 20(4), 673–685 (2008)

    Article  Google Scholar 

  9. Bonetti, E., Frémond, M.: Analytical results on a model for damaging in domains and interfaces. ESAIM Control Optim. Calc. Var. 17(4), 955–974 (2011)

    Article  MathSciNet  Google Scholar 

  10. Bonetti, E., Freddi, F., Segatti, A.: An existence result for a model of complete damage in elastic materials with reversible evolution. Contin. Mech. Thermodyn. 29(1), 31–50 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bonetti, E., Cavaterra, C., Freddi, F., Grasselli, M., Natalini, R.: A nonlinear model for marble sulphation including surface rugosity: theoretical and numerical results. Commun. Pure Appl. Anal. 18(2), 977–998 (2019)

    Article  MathSciNet  Google Scholar 

  12. Bourdin, B., Francfort, G.A., Marigo, J.J. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  Google Scholar 

  13. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1), 5–148 (2008)

    Article  MathSciNet  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised Edition. Textbooks in Mathematics. CRC Press, Boca Raton (2015)

    Google Scholar 

  15. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  Google Scholar 

  16. Freddi, F., Frémond, M.: Damage in domains and interfaces: a coupled predictive theory. J. Mech. Mater. Struct. 1, 1205–1234 (2006)

    Article  Google Scholar 

  17. Freddi, F., Royer-Carfagni, G.: Regularized variational theories of fracture: a unified approach. J. Mech. Phys. Solids 58(8), 1154–1174 (2010)

    Article  MathSciNet  Google Scholar 

  18. Freddi, F., Royer-Carfagni, G.: Phase-field slip-line theory of plasticity. J. Mech. Phys. Solids 94, 257–272 (2016)

    Article  MathSciNet  Google Scholar 

  19. Giavarini, C., Santarelli, M., Natalini, R., Freddi, F.: A non-linear model of sulphation of porous stones: numerical simulations and preliminary laboratory assessments. J. Cult. Herit. 9, 14–22 (2008)

    Article  Google Scholar 

  20. Marigo, J.J., Maurini, C., Pham, K.: An overview of the modelling of fracture by gradient damage models. Meccanica 51(12), 3107–3128 (2016)

    Article  MathSciNet  Google Scholar 

  21. Marini, P., Bellopede, R.: Bowing of marble slabs: evolution and correlation with mechanical decay. Construct. Build Mater. 23(7), 2599–2605 (2009)

    Article  Google Scholar 

  22. McCauley, R.: Corrosion of Ceramic and Composite Materials, 2nd edn. Corrosion Technology. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  23. McInnes, L.C., Moré, J.J., Munson, T.: TAO Users Manual (2010)

    Google Scholar 

  24. Nara, Y., Kaneko, K.: Sub-critical crack growth in anisotropic rock. Int. J. Rock Mech. Mining Sci. 43(3), 437–453 (2006)

    Article  Google Scholar 

  25. Pham, K., Amor, H., Marigo, J.J., Maurini, C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20(4), 618–652 (2011). https://doi.org/10.1177/1056789510386852

    Article  Google Scholar 

  26. Shushakova, V., Fuller, E.R., Heidelbach, F., Mainprice, D., Siegesmund, S.: Marble decay induced by thermal strains: simulations and experiments. Environ. Earth Sci. 69(4), 1281–1297 (2013)

    Article  Google Scholar 

  27. Smith, B., Gomez-Heras, M., McCabe, S.: Understanding the decay of stone-built cultural heritage. Progr. Phys. Geogr. Earth Environ. 32(4), 439–461 (2008)

    Article  Google Scholar 

  28. Wong, L.N.Y., Einstein, H.H.: Crack coalescence in molded gypsum and carrara marble: part 1. macroscopic observations and interpretation. Rock Mech. Rock. Eng. 42(3), 475–511 (2009)

    Google Scholar 

  29. Wong, L.N.Y., Einstein, H.H.: Crack coalescence in molded gypsum and carrara marble: part 2—microscopic observations and interpretation. Rock Mech. Rock. Eng. 42(3), 513–545 (2009)

    Article  Google Scholar 

  30. Yoshida, S., Matsuoka, J., Soga, N.: Sub-critical crack growth in sodium germanate glasses. J. Non-Cryst. Solids 316(1), 28–34 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Freddi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonetti, E., Cavaterra, C., Freddi, F., Grasselli, M., Natalini, R. (2021). Chemomechanical Degradation of Monumental Stones: Preliminary Results. In: Bonetti, E., Cavaterra, C., Natalini, R., Solci, M. (eds) Mathematical Modeling in Cultural Heritage. Springer INdAM Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-58077-3_4

Download citation

Publish with us

Policies and ethics