Skip to main content

A New Nonlocal Temperature-Dependent Model for Adhesive Contact

  • Conference paper
  • First Online:
Mathematical Modeling in Cultural Heritage

Part of the book series: Springer INdAM Series ((SINDAMS,volume 41))

Abstract

The aim of this note is twofold. First of all, we propose a very partial survey on the mathematical modeling and analysis of adhesive contact and delamination. Secondly, we advance a new model for adhesive contact with thermal effects that includes nonlocal adhesive forces and surface damage effects, as well as nonlocal heat flux contributions on the contact surface. In the derivation of the model, we follow the approach by M. Frémond applying it to nonlocal adhesive contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, K.T., Kuttler, K.L., Shillor, M.: On the dynamic behaviour of a thermoviscoelastic body in frictional contact with a rigid obstacle. Eur. J. Appl. Math. 8, 417–436 (1997)

    Article  MathSciNet  Google Scholar 

  2. Andrews, K.T., Shillor, M., Wright, S., Klarbring, A.: A dynamic thermoviscoelastic contact problem with friction and wear. Int. J. Eng. Sci. 14, 1291–1309 (1997)

    Article  MathSciNet  Google Scholar 

  3. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bonetti, E., Bonfanti, G., Lebon, F., Rizzoni, R.: A model of imperfect interface with damage. Meccanica 52, 1911–1922 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bonetti, E., Bonfanti, G., Lebon, F.: Derivation of imperfect interface models coupling damage and temperature. Comput. Math. Appl. 77, 2906–2916 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bonetti, E., Bonfanti, G., Rossi, R.: Well-posedness and long-time behaviour for a model of contact with adhesion. Indiana Univ. Math. J. 56, 2787–2819 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bonetti, E., Bonfanti, G., Rossi, R.: Global existence for a contact problem with adhesion. Math. Methods Appl. Sci. 31, 1029–1064 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bonetti, E., Bonfanti, G., Rossi, R.: Thermal effects in adhesive contact: modelling and analysis. Nonlinearity 22, 2697–2731 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bonetti, E., Bonfanti, G., Rossi, R.: Analysis of a unilateral contact problem taking into account adhesion and friction. J. Differ. Equ. 253, 438–462 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bonetti, E., Bonfanti, G., Rossi, R.: Analysis of a temperature-dependent model for adhesive contact with friction. Phys. D 285, 42–62 (2014)

    Article  MathSciNet  Google Scholar 

  11. Bonetti, E., Bonfanti, G., Rossi, R.: Modeling via internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity. Nonlinear Anal. Real World Appl. 22, 473–507 (2015)

    Article  MathSciNet  Google Scholar 

  12. Bonetti, E., Bonfanti, G., Rossi, R.: Global existence for a nonlocal model for adhesive contact. Appl. Anal. 97, 1315–1339 (2018)

    Article  MathSciNet  Google Scholar 

  13. Bonetti, E., Cavaterra, C., Freddi, F., Grasselli, M., Natalini, R.: A nonlinear model for marble sulphation including surface rugosity: theoretical and numerical results. Commun. Pure Appl. Anal. 18, 977–998 (2019)

    Article  MathSciNet  Google Scholar 

  14. Bonetti, E., Colli, P., Fabrizio, M., Gilardi, G.: Global solution to a singular integrodifferential system related to the entropy balance. Nonlinear Anal. 66, 1949–1979 (2007)

    Article  MathSciNet  Google Scholar 

  15. Bonetti, E., Colli, P., Fabrizio, M., Gilardi, G.: Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete Contin. Dyn. Syst. Ser. B 6, 1001–1026 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Bonetti, E., Frémond, M.: Analytical results on a model for damaging in domains and interfaces. ESAIM Control Optim. Calc. Var. 17, 955–974 (2011)

    Article  MathSciNet  Google Scholar 

  17. Bonetti, E., Rocca, E., Scala, R., Schimperna, G.: On the strongly damped wave equation with constraint. Commun. Partial Differ. Equ. 42, 1042–1064 (2017)

    Article  MathSciNet  Google Scholar 

  18. Bonfanti, G., Colturato, M., Rossi, R.: Existence results for a nonlocal temperature-dependent system modelling adhesive contact (2020). In preparation

    Google Scholar 

  19. Cocou, M., Rocca, R.: Existence results for unilateral quasistatic contact problems with friction and adhesion. M2AN Math. Model. Numer. Anal. 34, 981–1001 (2000)

    Google Scholar 

  20. Cocou, M., Schryve, M., Raous, M.: A dynamic unilateral contact problem with adhesion and friction in viscoelasticity. Z. Angew. Math. Phys. 61, 721–743 (2010)

    Article  MathSciNet  Google Scholar 

  21. Eck, C.: Existence of solutions to a thermo-viscoelastic contact problem with Coulomb friction. Math. Models Methods Appl. Sci. 12, 1491–1511 (2002)

    Article  MathSciNet  Google Scholar 

  22. Eck, C., Jarušek, J., Krbec, M.: Unilateral Contact Problems. Pure and Applied Mathematics vol. 270, Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  23. Eck, C., Jařusek, J.: The solvability of a coupled thermoviscoelastic contact problem with small Coulomb friction and linearized growth of frictional heat. Math. Meth. Appl. Sci. 22, 1221–1234 (1999)

    Article  MathSciNet  Google Scholar 

  24. Figueiredo, I., Trabucho, L.: A class of contact and friction dynamic problems in thermoelasticity and in thermoviscoelasticity. Int. J. Eng. Sci. 1, 45–66 (1995)

    Article  MathSciNet  Google Scholar 

  25. Fleming, D.C., Vizzini, A.: The energy absorption of composite plates under off-axis loads. J. Compos. Mater. 30, 1977–1995 (1996)

    Article  Google Scholar 

  26. Freddi, F., Frémond, M.: Damage in domains and interfaces: a coupled predictive theory. J. Mech. Mater. Struct. 1, 1205–1233 (2006)

    Article  Google Scholar 

  27. L. Freddi, R. Paroni, Roubíček, T., Zanini, C.: Quasistatic delamination models for Kirchhoff–Love plates. ZAMM Z. Angew. Math. Mech. 91, 845–865 (2011)

    Google Scholar 

  28. Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33, 1083–1103 (1996)

    Article  MathSciNet  Google Scholar 

  29. Frémond, M.: Non-Smooth Thermomechanics. Springer, Berlin (2002)

    Book  Google Scholar 

  30. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)

    MathSciNet  MATH  Google Scholar 

  31. Kočvara, M., Mielke, A., Roubíček, T.: A rate-independent approach to the delamination problem. Math. Mech. Solids 11, 423–447 (2006)

    Article  MathSciNet  Google Scholar 

  32. Mielke, A., Roubíček, T.: Rate-Independent Systems. Theory and Application. Applied Mathematical Sciences, vol. 193. Springer, New York (2015)

    Google Scholar 

  33. Mielke, A., Roubíček, T., Thomas, M.: From damage to delamination in nonlinearly elastic materials at small strains. J. Elast. 109, 235–273 (2012)

    Article  MathSciNet  Google Scholar 

  34. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)

    Google Scholar 

  35. Migórski, S., Zeng, S.: Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model. Nonlinear Anal. Real World Appl. 43, 121–143 (2018)

    Article  MathSciNet  Google Scholar 

  36. Raous, M., Cangémi, L., Cocu, M.: A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Eng. 177, 383–399 (1999)

    Article  MathSciNet  Google Scholar 

  37. Rossi, R., Roubíček, T.: Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal. 74, 3159–3190 (2011)

    Article  MathSciNet  Google Scholar 

  38. Rossi, R., Thomas, M.: From an adhesive to a brittle delamination model in thermo-visco-elasticity. ESAIM Control Optim. Calc. Var. 21, 1–59 (2015)

    Article  MathSciNet  Google Scholar 

  39. Roubíček, T.: Thermodynamics of rate-independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42, 256–297 (2010)

    Article  MathSciNet  Google Scholar 

  40. Roubíček, T.: Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal. 45, 101–126 (2013)

    Article  MathSciNet  Google Scholar 

  41. Roubíček, T., Kružík, M., Mantič, V., Panagiotopoulos, C.G., Vodička, R., Zeman, J.: Delamination and adhesive contacts, their mathematical modeling and numerical treatment. To appear as Chap.11 In: Mantič, V. (ed.), Mathematical Methods and Models in Composites, 2nd edn. Imperial College Press, London

    Google Scholar 

  42. Roubíček, T., Scardia, L., Zanini, C.: Quasistatic delamination problem. Contin. Mech. Thermodyn. 21, 223–235 (2009)

    Article  MathSciNet  Google Scholar 

  43. Scala, R.: Limit of viscous dynamic processes in delamination as the viscosity and inertia vanish. ESAIM Control Optim. Calc. Var. 23, 593–625 (2017)

    Article  MathSciNet  Google Scholar 

  44. Scala, R.: A weak formulation for a rate-independent delamination evolution with inertial and viscosity effects subjected to unilateral constraint. Interfaces Free Bound. 19, 79–107 (2017)

    Article  MathSciNet  Google Scholar 

  45. Scala, R., Schimperna, G.: A contact problem for viscoelastic bodies with inertial effects and unilateral boundary constraints. Eur. J. Appl. Math. 28, 91–122 (2017)

    Article  MathSciNet  Google Scholar 

  46. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonetti, E., Bonfanti, G., Rossi, R. (2021). A New Nonlocal Temperature-Dependent Model for Adhesive Contact. In: Bonetti, E., Cavaterra, C., Natalini, R., Solci, M. (eds) Mathematical Modeling in Cultural Heritage. Springer INdAM Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-58077-3_3

Download citation

Publish with us

Policies and ethics