Skip to main content

Representative Volume Elements for the Analysis of Concrete Like Materials by Computational Homogenization

  • Conference paper
  • First Online:
Mathematical Modeling in Cultural Heritage

Part of the book series: Springer INdAM Series ((SINDAMS,volume 41))

Abstract

The problem of devising an appropriate Representative Volume Element (RVE) for the analysis of concrete-like-materials is throughly discussed in the range of the elastic behavior. To this end, assuming concrete as a two-phases material (mortar and aggregates), the geometry of the RVE is automatically generated on the basis of spherical or polyhedral aggregates by proposing a new algorithm for the case of the polyhedral shapes. The associated apparent macro-response is evaluated by computational homogenization and its feasible use is pointed out. The subsequent numerical experimentation aims to highlight the influence of the relevant parameters such as the RVE’s size, aggregates shapes, constitutive moduli of the constituents and applied boundary conditions on the evaluation of the RVE’s macro-response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neville, A.: Properties of Concrete. Pearson Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  2. Kezmane, A., Chiaia, B., Kumpyak, O., Maksimov, V., Placidi, L.: 3D modelling of reinforced concrete slab with yielding supports subject to impact load. Eur. J. Environ. Civil Eng. 21(7–8), 988–1025 (2017)

    Article  Google Scholar 

  3. Chiaia, B., Kumpyak, O., Placidi, L., Maksimov, V.: Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng. Struct. 96, 88–99 (2015)

    Article  Google Scholar 

  4. Euro-c 2014: In: Bićanić, N., Mang, H., Meschke, G., de Borst, R. (eds.) Computational Modelling of Concrete Structures. CRC Press, Boca Raton (2014)

    Google Scholar 

  5. Zohdi, T.I., Wriggers, P.: Introduction to Computational Micromechanics. Springer, Berlin, 2005

    Book  Google Scholar 

  6. Bazant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  7. Jirasek, M., Bazant, Z.P.: Inelastic Analysis of Structures. Wiley, Hoboken (2002)

    Google Scholar 

  8. Scerrato, D., Giorgio, I., Della Corte, A., Madeo, A., Dowling, N.E., Darve, F.: Towards the design of an enriched concrete with enhanced dissipation performances. Cement Concrete Res. 84, 48–61 (2016)

    Article  Google Scholar 

  9. Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate dependent internal friction. Eur. J. Environ. Civil Eng. 21(7–8), 821–839 (2017)

    Article  Google Scholar 

  10. Scerrato, D., Giorgio, I., Della Corte, A., Madeo, A., Limam, A.: A micro-structural model for dissipation phenomena in the concrete. Int. J. Numer. Anal. Methods Geom. 39(18), 2037–2052 (2015). nag.2394

    Google Scholar 

  11. Unger, J.F., Eckardt, S.: Multiscale modeling of concrete - from mesoscale to macroscale. Arch. Comput. Methods Eng. 18, 341–393 (2011)

    Article  Google Scholar 

  12. Takano, N., Kimura, K., Zako, M., Kubo, F.: Multi-scale analysis and microscopic stress evaluation for ceramics considering the random microstructures. JSME Int. J. A Solid Mech. Mater. Eng. 46(4), 527–535 (2003)

    Google Scholar 

  13. Hollister, S.J., Kikuchi, N.: Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue. Biotechnol. Bioeng. 43(7), 586–596 (1994)

    Article  Google Scholar 

  14. Wittman, F.H., Roelfstra, P.E., Sadouki, H.: Simulation and analysis of composite structures. Mater. Sci. Eng. 68, 239–248 (1985)

    Article  Google Scholar 

  15. E.J. Garboczi, Three-dimensional mathematical analysis of particle shape using x-ray tomography and spherical harmonics: application to aggregates used in concrete. Cement Concrete Res. 32, 1621–1638 (2002)

    Article  Google Scholar 

  16. Wriggers, P., Moftah, S.O.: Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements Anal. Des. 42, 623–636 (2006)

    Article  Google Scholar 

  17. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40, 3647–3679 (2003)

    Article  Google Scholar 

  18. Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44(4), 497–524 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kouznetsova, V.G., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27, 37–48 (2001)

    Article  Google Scholar 

  20. Hain, M., Wriggers, P.: Numerical homogenization of hardened cement paste. Comput. Mech. 42(2), 197–212 (2008)

    Article  Google Scholar 

  21. Rycroft, C.H.: Software library for three-dimensional computations of the Voronoi tessellation (2008). http://math.lbl.gov/voro++/

  22. Sonon, B., François, B., Massart, T.J.: A unified level set based methodology for fast generation of complex microstructural multi-phase {RVEs}. Comput. Methods Appl. Mech. Eng. 223–224, 103–122 (2012)

    Article  Google Scholar 

  23. Geuzaine, C., Remacle, J.F.: GMSH: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  Google Scholar 

  24. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Engrg. 193, 5525–5550 (2004)

    Article  Google Scholar 

  25. Tyrus, J.M., Gosz, M., DeSantiago, E.: A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models. Int. J. Solids Struct. 44(9), 2972–2989 (2007)

    Article  Google Scholar 

  26. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40, 1907–1921 (2003)

    Article  Google Scholar 

  27. Bilotta, A., Garcea, G., Leonetti, L.: A composite mixed finite element model for the elasto-plastic analysis of 3D structural problems. Finite Elem. Anal. Des. 113(C), 43–53 (2016)

    Article  Google Scholar 

  28. Tedesco, F., Bilotta, A., Turco, E.: Multiscale 3D mixed FEM analysis of historical masonry constructions. Eur. J. Environ. Civil Eng. 21(7–8), 772–797 (2017)

    Article  Google Scholar 

  29. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Andrea Causin, Margherita Solci and Emilio Turco gratefully acknowledge the University of Sassari for funding their research in the frame of the Fondo di Ateneo per la ricerca 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bilotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilotta, A., Causin, A., Solci, M., Turco, E. (2021). Representative Volume Elements for the Analysis of Concrete Like Materials by Computational Homogenization. In: Bonetti, E., Cavaterra, C., Natalini, R., Solci, M. (eds) Mathematical Modeling in Cultural Heritage. Springer INdAM Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-58077-3_2

Download citation

Publish with us

Policies and ethics