Skip to main content

Greenhouse Phenomenon in the Earth’s Atmosphere

  • Chapter
  • First Online:
Global Atmospheric Phenomena Involving Water

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 382 Accesses

Abstract

The “line-by-line” method is used for evaluation of thermal emission of the standard atmosphere toward the Earth. Accounting for thermodynamic equilibrium of the radiation field with air molecules and considering the atmosphere as a weakly nonuniform layer, we reduce emission at a given frequency for this layer that contained molecules of various types to that of a uniform layer which is characterized by a certain radiative temperature \(T_\omega \), an optical thickness \(u_\omega \) and an opaque factor \(g(u_\omega )\). Radiative parameters of molecules are taken from the HITRAN database, and an altitude of cloud location is taken from the requirement of coincidence of the total radiative flux from such evaluation with that followed from the energetic balance of the Earth. As a result of this evaluation for the contemporary atmosphere, we find that the radiative flux due to H\(_2\)O molecules equals \(165\,\mathrm{W}/\mathrm{m}^2\), the flux of \(94\,\mathrm{W}/\mathrm{m}^2\) is created by clouds, the radiative flux due to CO\(_2\) molecules is \(61\,\mathrm{W}/\mathrm{m}^2\), CH\(_4\) molecules create a flux of \(4\,\mathrm{W}/\mathrm{m}^2\), and the flux \(4\,\mathrm{W}/\mathrm{m}^2\) is due to N\(_2\)O molecules. In addition, approximately 95% of the radiative flux at frequencies below \(800\,\mathrm{cm}^{-1}\) is created by H\(_2\)O and CO\(_2\) molecules, while \(84\%\) of this flux at frequencies above \(800\,\mathrm{cm}^{-1}\) is due to water microdroplets of clouds. It is shown that an increase of the concentration of one component which leads to an increasing radiative flux due to this component causes simultaneously to decreasing radiative flux due to other components because of overlapping of their spectra that corresponds to the Kirchhoff law. In particular, doubling of the concentration of atmospheric carbon dioxide gives an increase of the radiative flux due to this component by \(7.2\,\mathrm{W}/\mathrm{m}^2\), whereas radiative fluxes due to water molecules and water microdroplets decrease by \(3.0\,\mathrm{W}/\mathrm{m}^2\) and \(2.9\,\mathrm{W}/\mathrm{m}^2\) correspondingly, i.e. the change of the total radiative flux is \(1.3\,\mathrm{W}/\mathrm{m}^2\). This fact is not taken into account in some climatological models. Interaction of infrared radiation with water microdroplet and its pass through clouds is analyzed on the basis of the Mie model according to which a droplet is characterized by a sharp boundary. It is shown that stratus clouds, rather than cumulus ones, partake mostly in greenhouse phenomena of the Earth’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Goody, Atmospheric Radiation: Theoretical Basis (Oxford University Press, London, 1964)

    Google Scholar 

  2. R.M. Goody, Y.L. Yung, Principles of Atmospheric Physics and Chemistry (Oxford University Press, New York, 1995)

    Google Scholar 

  3. B.M. Smirnov, Microphysics of Atmospheric Phenomena (Springer Atmospheric Series, Switzerland, 2017)

    Book  Google Scholar 

  4. M. Wendisch, P. Yang, Theory of Atmospheric Radiative Transfer (Wiley, Singapore, 2012)

    Google Scholar 

  5. M.F. Modest, Radiative Heat Transfer (Elsevier, Amsterdam, 2013)

    Book  Google Scholar 

  6. K.Y. Kondratyev, Radiation in the Atmosphere (Academic Press, New York, 1969)

    Google Scholar 

  7. E.J. McCartney, Absorption and Emission by Atmospheric Gases (Wiley, New York, 1983)

    Google Scholar 

  8. K.N. Liou, An Introduction to Atmospheric Radiation (Academic Press, Amsterdam, 2002)

    Google Scholar 

  9. G.W. Petry, A First Course in Atmospheric Radiation (Sunsign Public School, Madison, 2006)

    Google Scholar 

  10. W. Zdunkowski, T. Trautmann, A. Bott, Radiation in the Atmosphere (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  11. K.Y. Kondratyev, V.F. Krapivin, C.A. Varotsos, Global Carbon Cycle and Climate Change (Springer Praxis Publishing, Chichester, 2003)

    Google Scholar 

  12. K.Y. Kondratyev, L.S. Ivlev, V.F. Krapivin, C.A. Varotsos, Atmospheric Aerosol Properties. Formation, Processes and Impacts (Springer Praxis Publishing, Chichester, 2006)

    Google Scholar 

  13. T.L. Hill, An Introduction to Statistical Thermodynamics (Addison Wesley, Reading, MA, 1960)

    Google Scholar 

  14. G.N. Lewis, M. Randall, K.S. Pitzer, L. Brewer, Thermodynamics (McGraw Hill, New York, 1961)

    Google Scholar 

  15. F. Reif, Statistical and Thermal Physics (McGrow Hill, Boston, 1965)

    Google Scholar 

  16. YaB Zel’dovich, YuP Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (Academic Press, New York, 1966)

    Google Scholar 

  17. G. Kirchhoff, R. Bunsen, Annalen der Physik und Chemie 109, 275 (1860)

    Google Scholar 

  18. A. Beer, Annalen der Physik und Chemie 86, 78 (1852)

    Google Scholar 

  19. J.H. Lambert, Photometry, or, on the Measure and Gradations of Light, Colors, and Shade (Eberhardt Klett, Augsburg, 1760)

    Google Scholar 

  20. I.I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1979). Charging of particles

    Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, Statistical Physics, vol. 1 (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  22. V.P. Krainov, H.R. Reiss, B.M. Smirnov, Radiative Processes in Atomic Physics (Wiley, New York, 1997)

    Book  Google Scholar 

  23. V.P. Krainov, B.M. Smirnov, Atomic and Molecular Radiative Processes (Springer Nature, Switzerland, 2019)

    Book  Google Scholar 

  24. W. Wien, Wied. Ann. Phys. Chem. 58, 662 (1896). Emission of gases

    Google Scholar 

  25. B.M. Smirnov, Physics of Weakly Ionized Gas (Nauka, Moscow, 1972; in Russian)

    Google Scholar 

  26. B.M. Smirnov, Physics of Ionized Gases (Wiley, New York, 2001)

    Book  Google Scholar 

  27. B.M. Smirnov, Physics of Weakly Ionized Gases (Mir, Moscow, 1980)

    Google Scholar 

  28. B.M. Smirnov, JETP 126, 446 (2018)

    Article  ADS  Google Scholar 

  29. B.M. Smirnov, Transport of Infrared Atmospheric Radiation (Fundamental of the Greenhouse Phenomenon.) (de Gruyter, Berlin, 2020)

    Google Scholar 

  30. B.M. Smirnov, EPL 114, 24005 (2016)

    Article  ADS  Google Scholar 

  31. https://www.cfa.harvard.edu/

  32. http://www.hitran.iao.ru/home

  33. E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1970)

    MATH  Google Scholar 

  34. M. Simeckova, D. Jacquemart, L.S. Rothman et al., JQSRT 98, 130 (2006)

    Google Scholar 

  35. http://www.hitran.org/links/docs/definitions-and-units/

  36. L.S. Rothman, I.E. Gordon, Y. Babikov et al., JQSRT 130, 4 (2013)

    Google Scholar 

  37. I.E. Gordon, L.S. Rothman, C. Hill et al., JQSRT 203, 3 (2017)

    Google Scholar 

  38. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, Princeton, 1945)

    Google Scholar 

  39. G.M. Barrow, Introduction to Molecular Spectroscopy (McGraw-Hill, New York, 1962)

    Google Scholar 

  40. H.C. Allen, P.C. Cross, Molecular Vibrators: The Theory and Interpretation of High Resolution Infrared Spectra (Wiley, New York, 1963)

    MATH  Google Scholar 

  41. M.A. El’yashevich, Molecular Spectroscopy (Fizmatgiz, Moscow, 1963; in Russian)

    Google Scholar 

  42. J.I. Steinfeld, Molecules and Radiation (Dover, New York, 1985)

    Google Scholar 

  43. S. Svanberg, Atomic and Molecular Spectroscopy (Springer, Berlin, 1991)

    Book  Google Scholar 

  44. C. Banwell, E. McCash, Fundamentals for Molecular Spectroscopy (McGrow Hill, London, 1994)

    Google Scholar 

  45. P.S. Sindhu, Fundamentals of Molecular Spectroscopy (New Age International, Dehli, 2006)

    Google Scholar 

  46. S. Chandra, Molecular Spectroscopy (Alpha Science International, Dehli, 2009)

    Google Scholar 

  47. J.L. McHale, Molecular Spectroscopy (CRC Press, Boca Raton, 2017)

    Google Scholar 

  48. V.P. Krainov, B.M. Smirnov, JETP 129, 9 (2019)

    Article  ADS  Google Scholar 

  49. http://www1.lsbu.ac.uk/water/water-vibrational-spectrum

  50. A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, 1985)

    Book  Google Scholar 

  51. S.V. Khristenko, A.I. Maslov, V.P. Shevelko, Molecules and Their Spectroscopic Properties (Springer, Berlin, 1998)

    Book  Google Scholar 

  52. G. Mie, Annalen der Physik 330, 377 (1908). §2

    Google Scholar 

  53. J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941)

    MATH  Google Scholar 

  54. H.C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957)

    Google Scholar 

  55. C.F. Bohren, D.R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2010)

    Google Scholar 

  56. https://en.wikipedia.org/wiki/Properties-of-water

  57. T.S. Light et al., Electrochem. Solid State Lett. 8, E16 (2005)

    Google Scholar 

  58. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  59. B.M. Smirnov, Clusters and Small Particles in Gases and Plasmas (Springer NY, New York, 1999)

    Google Scholar 

  60. https://en.wikipedia.org/wiki/Refractive-index

  61. H.D. Downing, D.W. Williams, J. Geoph. Res. 80, 1656 (1975)

    Article  ADS  Google Scholar 

  62. D.A. Draegert, N.W.B. Stone, B. Curnutte, D. Williams, J. Opt. Soc. Am. 56, 64 (1966)

    Article  ADS  Google Scholar 

  63. W.M. Irvine, J.B. Pollack, Icarus 8, 324 (1968)

    Article  ADS  Google Scholar 

  64. M.R. Querry, B. Curnutte, D. Williams, J. Opt. Soc. Am. 59, 1299 (1969)

    Article  ADS  Google Scholar 

  65. V.M. Zolatarev, B.A. Mikhailov, L.I. Aperovich, S.I. Popov, Opt. Spectrosc. 27, 430 (1969)

    ADS  Google Scholar 

  66. C.W. Robertson, D. Williams, J. Opt. Soc. Am. 61, 1316 (1971)

    Article  ADS  Google Scholar 

  67. A.N. Rusk, D. Williams, M.R. Querry, J. Opt. Soc. Am. 61, 895 (1971)

    Article  ADS  Google Scholar 

  68. P.S. Ray, Appl. Opt. 11, 836 (1972)

    Article  Google Scholar 

  69. C.W. Robertson, B. Curnutte, D. Williams, Mol. Phys. 26, 183 (1973)

    Article  ADS  Google Scholar 

  70. O. Boucher, Atmospheric Aerosols. Properties and Climate Impacts (Springer, Dordrecht, 2015)

    Google Scholar 

  71. D. Eisenberg, W. Kauzmann, The Structure and Properties of Water (Oxford University Press, New York, 1969)

    Google Scholar 

  72. J.B. Hasted, Aqueous Dielectrics (Chapman and Hall, London, 1973)

    Google Scholar 

  73. M.N. Afsar, J.B. Hasted, Infrared Phys. 18, 835 (1978)

    Article  ADS  Google Scholar 

  74. https://en.wikipedia.org/wiki/Electromagnetic-absorption-by-water

  75. http://www1.lsbu.ac.uk/water/water-vibrational-spectrum.html

  76. C.M.R. Platt, Quart. J. R. Meteorol. Soc. 102, 553 (1976)

    Article  ADS  Google Scholar 

  77. S. Twomey, Geofis. Pure Appl. 43, 227 (1959)

    Article  ADS  Google Scholar 

  78. S. Twomey, J. Atmos. Sci. 34, 1149 (1977)

    Article  ADS  Google Scholar 

  79. A.V. Gurevich, E.E. Tsedilina, Long Distance Propagation of HF Radio Waves (Springer, Berlin, 1985)

    Google Scholar 

  80. J.S. Seybold, Introduction to RF Propagation (Wiley, Hoboken, New Jersey, 2005)

    Book  Google Scholar 

  81. https://en.wikipedia.org/wiki/Radio-propagation

  82. H.J. Liebe, G.A. Hufford, T. Manabe, Int. J. Infrared Millim. Waves. 12, 659 (1991)

    Article  ADS  Google Scholar 

  83. M.L. Salby, Physics of the Atmosphere and Climate (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  84. D.L. Hartmann, Global Physical Climatology (Elesevier, Amsterdam, 2016)

    Google Scholar 

  85. B.M. Smirnov, J. Phys. D Appl. Phys. 51, 214004 (2018)

    Google Scholar 

  86. Palaeosens Project Members, Nature 491, 683 (2012)

    Article  ADS  Google Scholar 

  87. L.B. Stap, P. Köhler, G. Lohmann, Earth Syst. Dynam. 10, 333–345 (2019)

    Article  ADS  Google Scholar 

  88. J. Feichter, E. Roeckner, U. Lohmann, B. Liepert, J. Clim. 17, 2384 (2004)

    Article  ADS  Google Scholar 

  89. J. Hansen et al., J. Geophys. Res. 110, D18104 (2005)

    Google Scholar 

  90. https://en.wikipedia.org/wiki/Climate-sensitivity

  91. Intergovernmental Panel on Climate Change. Nature 501, 297–298 (2013). http://www.ipcc.ch/pdf/assessment?report/ar5/wg1/WGIAR5-SPM-brochure-en.pdf

  92. J.T. Fasullo, K.E. Trenberth, Science 338, 792 (2012)

    Article  ADS  Google Scholar 

  93. G.N. Plass, Tellus VIII 141 (1956)

    Google Scholar 

  94. N. Andronova, M.E. Schlesinger, J. Geophys. Res. 106, D22605 (2001)

    Article  ADS  Google Scholar 

  95. M.A. Snyder, J.L. Bell, L.C. Sloan, Geophys. Res. Lett. 29, 014431 (2002)

    Article  Google Scholar 

  96. J.D. Annan, J.C. Hargreaves, Geophys. Res. Lett. 33, L06704 (2006)

    Article  ADS  Google Scholar 

  97. A. Ganopolski, T. Schneider von Deimling, Geophys. Res. Lett. 35, L23703 (2008)

    Article  ADS  Google Scholar 

  98. M.E. Walter, Not. Am. Mat. Soc. 57, 1278 (2010)

    Google Scholar 

  99. A. Schmittner, N.M. Urban, J.D. Shakun, Science 334, 1385 (2011)

    Google Scholar 

  100. The Warming Papers, ed. by D. Archer, R. Pierrehumbert (Wiley-Blackwill, Oxford, 2011)

    Google Scholar 

  101. S. Arrhenius, Phil. Mag. 41, 237 (1896)

    Article  Google Scholar 

  102. G.S. Calendar, Weather 4, 310 (1949)

    Article  ADS  Google Scholar 

  103. G.N. Plass, D.I. Fivel, Quant. J. Roy. Met. Soc. 81, 48 (1956)

    Article  ADS  Google Scholar 

  104. W.M. Elsasser, Phys. Rev. 54, 126 (1938)

    Article  ADS  Google Scholar 

  105. B.M. Smirnov, Int. Rev. At. Mol. Phys. 10, 39 (2019)

    Google Scholar 

  106. B.M. Smirnov, J. Atmos. Sci. Res. 2, N4, 21 (2019)

    Google Scholar 

  107. M. Milankovich, Theorie Mathematique des Phenomenes Thermiques produits par la Radiation Solaire (Gauthier-Villars, Paris, 1920)

    Google Scholar 

  108. M. Milankovich, Canon of Insolation and the Ice Age Problem (Belgrade, 1941)

    Google Scholar 

  109. U.S. Standard Atmosphere (Washington, U.S. Government Printing Office, 1976)

    Google Scholar 

  110. https://en.wikipedia.org/wiki/Outgoing-longwave-radiation

  111. R.T. Pierrehumbert, Principles of Planetary Climate (Cambridge University Press, New York, 2010)

    Book  MATH  Google Scholar 

  112. R.T. Pierrehumbert, Phys. Today 64, 33 (2011)

    Article  ADS  Google Scholar 

  113. W. Zhong, J.D. Haigh, Weather 68, 100 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris M. Smirnov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smirnov, B.M. (2020). Greenhouse Phenomenon in the Earth’s Atmosphere. In: Global Atmospheric Phenomena Involving Water. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-58039-1_6

Download citation

Publish with us

Policies and ethics