Abstract
The recent advancements in Internet of Things (IoT) technology and the increasing amount of sensing devices that collect and/or generate massive sensor data streams enhances the use of streaming analytics for providing timely and meaningful insights. The current paper proposes a framework for supporting streaming analytics in edge-cloud computational environment for logistics operations in order to maximize the potential value of IoT technology. The proposed framework is demonstrated in a real-life scenario of a large transportation asset in the aviation sector.
Keywords
- Data analytics
- Machine learning
- Predictive maintenance
- Aviation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutorials 20(4), 2923–2960 (2018)
Dai, H.N., Wang, H., Xu, G., Wan, J., Imran, M.: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies. Enterp. Inf. Syst. 1–25 (2019)
Zafarzadeh, M., Hauge, J.B., Wiktorsson, M., Hedman, I., Bahtijarevic, J.: Real-time data sharing in production logistics: exploring use cases by an industrial study. In: Ameri, F., Stecke, Kathryn E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IAICT, vol. 567, pp. 285–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29996-5_33
Killeen, P., Ding, B., Kiringa, I., Yeap, T.: IoT-based predictive maintenance for fleet management. Procedia Comput. Sci. 151, 607–613 (2019)
Isah, H., Abughofa, T., Mahfuz, S., Ajerla, D., Zulkernine, F., Khan, S.: A survey of distributed data stream processing frameworks. IEEE Access 7, 154300–154316 (2019)
Miyachi, C.: What is “Cloud”? It is time to update the NIST definition? IEEE Cloud Comput. 3, 6–11 (2018)
Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)
Cao, H., Wachowicz, M.: An edge-fog-cloud architecture of streaming analytics for Internet of Things applications. Sensors 19(16), 3594 (2019)
Lepenioti, K., Bousdekis, A., Apostolou, D., Mentzas, G.: Prescriptive analytics: literature review and research challenges. Int. J. Inf. Manag. 50, 57–70 (2020)
Nikhil, B.H.: Modelling and simulation of an industry 4.0 based predictive maintenance system in an aerospace value chain, Vellore Institute of Technology, School of Mechanical Engineering, Vellore (2019)
Acknowledgements
This work has been funded by the European Commission project H2020 UPTIME “Unified Predictive Maintenance System” (768634).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
von Stietencron, M. et al. (2020). Streaming Analytics in Edge-Cloud Environment for Logistics Processes. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Towards Smart and Digital Manufacturing. APMS 2020. IFIP Advances in Information and Communication Technology, vol 592. Springer, Cham. https://doi.org/10.1007/978-3-030-57997-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-57997-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57996-8
Online ISBN: 978-3-030-57997-5
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ifip.org/