Advertisement

Decentralized Industrial IoT Data Management Based on Blockchain and IPFS

Conference paper
  • 1 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 592)

Abstract

The wide application of Internet of Things (IoT) has fostered the development of Industry 4.0. In manufacturing domain, Industrial IoT (IIoT) are key components of the Factories of the Future (FoF). The big IIoT data are the foundation of implementing data-driven strategies. In current industrial practice, most of these IIoT data are wasted or fragmented in data silos due to security and privacy concerns. Novel data management approaches are required to replace traditional centralized data management systems. The rapid development of blockchain technologies provides a novel solution for this challenge leveraging its unique characteristics such as decentralization, immutability and traceability. However, blockchain is inefficient for exchanging big data due to transaction throughput limits. The peer-to-peer InterPlanetary File System (IPFS) provides a suitable complement for blockchain. Therefore, this paper aims to propose a decentralized IIoT data management approach based on blockchain and IPFS technology. The architecture and enabling technologies of the proposed system are introduced. A proof-of-concept implementation is realized and relevant experiments are conducted. The results demonstrated the feasibility of the proposed approach.

Keywords

Blockchain IPFS Data management Industrial IoT 

References

  1. 1.
    Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst. 37, 517–527 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018)CrossRefGoogle Scholar
  3. 3.
    Ordieres-Meré, J., Villalba-Díez, J., Zheng, X.: Challenges and opportunities for publishing IIoT data in manufacturing as a service business. Procedia Manuf. 39, 185–193 (2019)CrossRefGoogle Scholar
  4. 4.
    Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  5. 5.
    Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)Google Scholar
  6. 6.
    Mohamed, N., Al-Jaroodi, J.: Applying blockchain in industry 4.0 applications. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0852–0858. IEEE (2019)Google Scholar
  7. 7.
    Zhou, K., Liu, T., Zhou, L.: Industry 4.0: towards future industrial opportunities and challenges. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2147–2152. IEEE (2015)Google Scholar
  8. 8.
    Frické, M.: The knowledge pyramid: a critique of the DIKW hierarchy. J. Inf. Sci. 35(2), 131–142 (2009)CrossRefGoogle Scholar
  9. 9.
    Industrial-Internet-Consortium-(IIC): Smart factory applications in discrete manufacturing, Industrial Internet Consortium White Paper (2017)Google Scholar
  10. 10.
    Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-middle attack to the https protocol. IEEE Secur. Priv. 7(1), 78–81 (2009)CrossRefGoogle Scholar
  11. 11.
    David, S.: IOTA data marketplace (2017)Google Scholar
  12. 12.
    Brogan, J., Baskaran, I., Ramachandran, N.: Authenticating health activity data using distributed ledger technologies. Comput. Struct. Biotechnol. J. 16, 257–266 (2018)CrossRefGoogle Scholar
  13. 13.
    Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus protocols for blockchain networks. IEEE Commun. Surv. Tutorials 22(2), 1432–1465 (2020)CrossRefGoogle Scholar
  14. 14.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, Technical report, Manubot (2008)Google Scholar
  15. 15.
    Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)Google Scholar
  16. 16.
    Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology, and governance. J. Econ. Perspect. 29(2), 213–238 (2015)CrossRefGoogle Scholar
  17. 17.
    Harlev, M.A., Sun Yin, H., Langenheldt, K.C., Mukkamala, R., Vatrapu, R.: Breaking bad: de-anonymising entity types on the bitcoin blockchain using supervised machine learning. In: Proceedings of the 51st Hawaii International Conference on System Sciences (2018)Google Scholar
  18. 18.
    Zheng, X., Mukkamala, R.R., Vatrapu, R., Ordieres-Mere, J.: Blockchain-based personal health data sharing system using cloud storage. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Health- com), pp. 1–6. IEEE (2018)Google Scholar
  19. 19.
    Lee, J., Azamfar, M., Singh, J.: A blockchain enabled cyber-physical system architecture for industry 4.0 manufacturing systems. Manuf. Lett. 20, 34–39 (2019)CrossRefGoogle Scholar
  20. 20.
    Yu, C., Zhang, L., Zhao, W., Zhang, S.: A blockchain-based service composition architecture in cloud manufacturing. Int. J. Comput. Integr. Manuf. 1–15 (2019).  https://doi.org/10.1080/0951192X.2019.1571234
  21. 21.
    Mondragon, A.E.C., Mondragon, C.E.C., Coronado, E.S.: Exploring the applicability of blockchain technology to enhance manufacturing supply chains in the composite materials industry. In: 2018 IEEE International Conference on Applied System Invention (ICASI), pp. 1300–1303. IEEE (2018)Google Scholar
  22. 22.
    Westerkamp, M., Victor, F., Küpper, A.: Tracing manufacturing processes using blockchain-based token compositions. Digital Commun. Netw. 6(2), 167–176 (2019)CrossRefGoogle Scholar
  23. 23.
    Liu, C.H., Lin, Q., Wen, S.: Blockchain-enabled data collection and sharing for industrial IoT with deep reinforcement learning. IEEE Trans. Ind. Inform. 15(6), 3516–3526 (2018)CrossRefGoogle Scholar
  24. 24.
    Lin, X., Li, J., Wu, J., Liang, H., Yang, W.: Making knowledge tradable in edge- AI enabled IoT: a consortium blockchain-based efficient and incentive approach. IEEE Trans. Ind. Inform. 15(12), 6367–6378 (2019)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y.: Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans. Ind. Inform. 14(8), 3690–3700 (2018)Google Scholar
  26. 26.
    Wang, S., Taha, A.F., Wang, J., Kvaternik, K., Hahn, A.: Energy crowdsourcing and peer-to-peer energy trading in blockchain-enabled smart grids. IEEE Trans. Syst. Man Cybern.: Syst. 49(8), 1612–1623 (2019)CrossRefGoogle Scholar
  27. 27.
    Zhou, Z., Wang, B., Dong, M., Ota, K.: Secure and efficient vehicle-to-grid energy trading in cyber physical systems: integration of blockchain and edge computing. IEEE Trans. Syst. Man Cybern.: Syst. 50(1), 43–57 (2019)CrossRefGoogle Scholar
  28. 28.
    Popov, S.: The tangle. White paper, p. 131 (2016)Google Scholar
  29. 29.
    Zheng, X., Sun, S., Mukkamala, R.R., Vatrapu, R., Ordieres-Meré, J.: Accelerating health data sharing: a solution based on the Internet of Things and distributed ledger technologies. J. Med. Internet Res. 21(6), e13583 (2019)CrossRefGoogle Scholar
  30. 30.
    Benet, J.: IPFS-content addressed, versioned, P2P file system (2014)Google Scholar
  31. 31.
    Sun, S., Zheng, X., Villalba-Díez, J., Ordieres-Meré, J.: Indoor air-quality data-monitoring system: long-term monitoring benefits. Sensors 19(19), 4157 (2019)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  1. 1.Institute of Mechanical Engineering, EPFLLausanneSwitzerland
  2. 2.ETSII, Universidad Politécnica de MadridMadridSpain

Personalised recommendations