Skip to main content

Improving the Safety of Using Didactic Setups by Applying Augmented Reality

  • Conference paper
  • First Online:
Advances in Production Management Systems. Towards Smart and Digital Manufacturing (APMS 2020)

Abstract

The application of didactic setups is one of the commonly used teaching methods at schools and universities nowadays. By using the didactic setups, students are introduced to real components and real processes that take place in the industry. However, the students often need to use the didactic setups outside of regular teaching activities and at times when teaching staff is unavailable. This paper presents a solution for improving the safety of using the didactic setups by applying an augmented reality solution. The presented solution was implemented on a didactic setup for control of a three-phase asynchronous motor. In addition to improving the safety, the proposed solution allows the students to autonomously use the didactic setups beyond regular teaching hours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhutkar, G., Rajhans, N., Konkani, A., Dhore, M.: Usability issues of user manuals provided with medical devices. Br. J. Healthc. Comput. Inf. Manag. (2009)

    Google Scholar 

  2. Møller, M.H.: Usability testing of user manuals. Commun. Lang. Work. 2, 51–59 (2013)

    Article  Google Scholar 

  3. Cunha, B.G.P., et al.: DidacTronic: a low-cost and portable didactic lab for electronics: kit for digital and analog electronic circuits. In: 2016 IEEE Global Humanitarian Technology Conference (GHTC), pp. 296–303 (2016)

    Google Scholar 

  4. Ostojic, G., Stankovski, S., Tarjan, L., Senk, I., Jovanovic, V.: Development and implementation of didactic sets in mechatronics and industrial engineering courses. Int. J. Eng. Educ. 26, 2 (2010)

    Google Scholar 

  5. Stankovski, S., Tarjan, L., Skrinjar, D., Ostojic, G., Senk, I.: Using a didactic manipulator in mechatronics and industrial engineering courses. IEEE Trans. Educ. 53, 572–579 (2009)

    Article  Google Scholar 

  6. Van Wyk, E., De Villiers, R.: Virtual reality training applications for the mining industry. In: Proceedings of the 6th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, pp. 53–63 (2009)

    Google Scholar 

  7. Gavish, N., et al.: Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 23, 778–798 (2015)

    Article  Google Scholar 

  8. Hasan, R.B., Aziz, F.B.A., Mutaleb, H.A.A., Umar, Z.: Virtual reality as an industrial training tool: a review. J. Adv. Rev. Sci. Res. 29, 20–26 (2017)

    Google Scholar 

  9. Billinghurst, M., Kato, H., Poupyrev, I., et al.: Tangible augmented reality. ACM SIGGRAPH ASIA 7, 1–10 (2008)

    Google Scholar 

  10. Marescaux, J., Rubino, F., Arenas, M., Mutter, D., Soler, L.: Augmented-reality–assisted laparoscopic adrenalectomy. JAMA 292, 2211–2215 (2004)

    Google Scholar 

  11. Fraga-Lamas, P., Fernández-Caramés, T.M., Blanco-Novoa, Ó., Vilar-Montesinos, M.A.: A review on industrial augmented reality systems for the Industry 4.0 shipyard. IEEE Access 6, 13358–13375 (2018)

    Article  Google Scholar 

  12. Yuen, S.C.-Y., Yaoyuneyong, G., Johnson, E.: Augmented reality: an overview and five directions for AR in education. J. Educ. Technol. Dev. Exch. 4, 11 (2011)

    Google Scholar 

  13. Kounavis, C.D., Kasimati, A.E., Zamani, E.D.: Enhancing the tourism experience through mobile augmented reality: challenges and prospects. Int. J. Eng. Bus. Manag. 4, 10 (2012)

    Article  Google Scholar 

  14. Fischer, J., Neff, M., Freudenstein, D., Bartz, D.: Medical augmented reality based on commercial image guided surgery. In: EGVE, pp. 83–86 (2004)

    Google Scholar 

  15. Yovcheva, Z., Buhalis, D., Gatzidis, C.: Smartphone augmented reality applications for tourism. E-Rev. Tour. Res. 10, 63–66 (2012)

    Google Scholar 

  16. Pettersen, T., Pretlove, J., Skourup, C., Engedal, T., Lokstad, T.: Augmented reality for programming industrial robots. In: The Second IEEE and ACM International Symposium on Mixed and Augmented Reality 2003, Proceedings, pp. 319–320 (2003)

    Google Scholar 

  17. Peng, F., Al-Sayegh, M.: Personalised virtual fitting for fashion. Int. J. Ind. Eng. Manag. 5, 233–240 (2014)

    Google Scholar 

  18. Cherdo, L.: The 8 best augmented reality smartglasses in 2020. https://www.aniwaa.com/buyers-guide/vr-ar/best-augmented-reality-smartglasses/. Accessed 26 Mar 2020

  19. Microsoft: Visual Studio tutorials—C#. https://docs.microsoft.com/en-us/visualstudio/get-started/csharp/?view=vs-2019. Accessed 26 Mar 2020

  20. Tarjan, L., Šenk, I., Kovač, R., Horvat, S., Ostojić, G., Stankovski, S.: Automatic identification based on 2D barcodes. Int. J. Ind. Eng. Manag. 2, 151–157 (2011)

    Google Scholar 

  21. Dašić, P., Dašić, J., Crvenković, B.: Applications of access control as a service for software security. Int. J. Ind. Eng. Manag. 7, 111–116 (2016)

    Google Scholar 

Download references

Acknowledgment

This research has been supported by the Ministry of Education, Science and Technological Development, Government of the Republic of Serbia, through the project: “Innovative scientific and artistic research from the FTN activity domain”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan Tegeltija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tegeltija, S., Reljić, V., Šenk, I., Tarjan, L., Tejić, B. (2020). Improving the Safety of Using Didactic Setups by Applying Augmented Reality. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Towards Smart and Digital Manufacturing. APMS 2020. IFIP Advances in Information and Communication Technology, vol 592. Springer, Cham. https://doi.org/10.1007/978-3-030-57997-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57997-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57996-8

  • Online ISBN: 978-3-030-57997-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics