Skip to main content

Abstract

Companies are progressively gathering data within the digitalization of production processes. By actively using these production data sets operational processes can be improved, hence empowering businesses to compete with other corporations. One way to achieve this is to use data from production processes to develop and offer smart services that enable companies to continuously improve and to become more efficient. In this paper, the authors present an industrial use case of how machine learning can be implemented into smart services in production processes to decrease the time for resolving upcoming issues in manufacturing. The implementation is carried out by using an assistance system that aids a team which attends to problems in the assembling of turbines. Therefore, the authors have analyzed the assembly problems from an issue management system that the team had to resolve. Subsequently three different approaches based upon natural language processing, regression and clustering were selected. This paper also presents the development and evaluation of the assistance system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stich, V., et al.: Digitale Dienstleistungsinnovationen. Smart Services agil und kundenorientiert entwickeln (2019)

    Google Scholar 

  2. Gogineni, S., Exner, K., Stark, R., Nickel, J., Oeler, M., Witte, H.: Semantic assistance system for providing smart services and reasoning in aero-engine manufacturing. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds.) MTSR 2019. CCIS, vol. 1057, pp. 90–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36599-8_8

    Chapter  Google Scholar 

  3. Treuner, F., Hübner, D., Baur, S., Wagner, S.M.: A survey of disruptions in aviation and aerospace supply chains and recommendations for increasing resilience. Supply Chain Manag. 14(3), 7–12 (2014)

    Google Scholar 

  4. Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45 (2016)

    Google Scholar 

  5. Loyer, J.L., Henriques, E., Fontul, M., Wiseall, S.: Comparison of machine learning methods applied to the estimation of manufacturing cost of jet engine components. Int. J. Prod. Econ. 178, 109–119 (2016)

    Google Scholar 

  6. Azzam, M., Haag, J.C., Jeschcke, P.: Application concept of artificial neural networks for turbomachinery design. Comput. Assist. Methods Eng. Sci. 16(2), 143–160 (2017)

    Google Scholar 

  7. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inf. 11(3), 812–820 (2015)

    Google Scholar 

  8. Belkadi, F., Dhuieb, M.A., Aguado, J.V., Laroche, F., Bernard, A., Chinesta, F.: Intelligent assistant system as a context-aware decision-making support for the workers of the future. Comput. Ind. Eng. 139, 105732 (2020)

    Google Scholar 

  9. Kocsis, T., Negny, S., Floquet, P., Meyer, X., Rév, E.: Case-based reasoning system for mathematical modelling options and resolution methods for production scheduling problems: case representation, acquisition and retrieval. Comput. Ind. Eng. 77, 46–64 (2014)

    Google Scholar 

  10. Wirth, R., Jochen, H.: CRISP-DM: towards a standard process model for data mining (2000)

    Google Scholar 

  11. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard coefficient for keywords similarity (2013)

    Google Scholar 

  12. Manna, M., Abdulameer, G.: Web documents similarity using k-shingle tokens and minhash technique. J. Eng. Appl. Sci. 13, 1499–1505 (2018)

    Google Scholar 

  13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality (2013)

    Google Scholar 

  14. Somani, A.K., Shekhawat, R.S., Mundra, A., Srivastava, S., Verma, V.K. (eds.): Smart Systems and IoT: Innovations in Computing. SIST, vol. 141. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8406-6

    Book  Google Scholar 

  15. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to document distances. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML 2015), pp. 957–966. JMLR.org (2015)

    Google Scholar 

  16. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  17. Github Model Tree project. https://github.com/ankonzoid/LearningX/tree/master/advanced_ML/model_tree. Accessed 21 Feb 2020

  18. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14

    Chapter  Google Scholar 

  19. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction (2018)

    Google Scholar 

  20. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    MATH  Google Scholar 

  21. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stats. Theory Methods 3(1), 1–27 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Google Scholar 

  23. McInnes, L., Healy, J., Saul, N., Groberger, L.: UMAP: uniform manifold approximation and projection. JOSS 3(29), 861 (2018)

    Google Scholar 

  24. McInnes, L., Healy, J., Astels, S.: hdbscan: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Brünnhäußer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brünnhäußer, J., Gogineni, S., Nickel, J., Witte, H., Stark, R. (2020). Assembly Issue Resolution System Using Machine Learning in Aero Engine Manufacturing. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. The Path to Digital Transformation and Innovation of Production Management Systems. APMS 2020. IFIP Advances in Information and Communication Technology, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-030-57993-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57993-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57992-0

  • Online ISBN: 978-3-030-57993-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics