Advertisement

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets

Conference paper
  • 265 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

In this paper, we explore the connection between two-party conditional disclosure of secrets (CDS) and verifiable computation. Here, the integrity mechanism underlying CDS is leveraged to ensure two-clients verifiable computation, where the computation is outsourced to an external server by two clients that share the input to the function. Basing integrity on CDS enjoys several significant advantages such as non-interactivity, constant rate communication complexity, a simple verification procedure, easily batched, and more.

In this work, we extend the definition of plain CDS, considering two additional security properties of privacy and obliviousness that respectively capture input and output privacy. We then show that these extended notions of CDS are useful for designing secure two-party protocols in the presence of an untrusted third party.

We complement the above with a sequence of new CDS constructions for a class of predicates of interest, including private set-intersection (PSI) and set-union cardinality, comparison, range predicate, and more. Based on these constructions we design new non-interactive constant-rate protocols for comparing two strings based on symmetric-key cryptography, and without requiring bit-decomposition. We additionally design new protocols for PSI cardinality and PSI based on recent work by Le, Ranellucci, and Gordon (CCS 2019) with similar advantages.

References

  1. 1.
    Applebaum, B., Arkis, B.: On the power of amortization in secret sharing: d-Uniform secret sharing and CDS with constant information rate. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 317–344. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03807-6_12CrossRefzbMATHGoogle Scholar
  2. 2.
    Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure of secrets: amplification, closure, amortization, lower-bounds, and separations. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 727–757. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_24CrossRefGoogle Scholar
  3. 3.
    Applebaum, B., Vasudevan, P.N.: Placing conditional disclosure of secrets in the communication complexity universe. In: ITCS, pp. 4:1–4:14 (2019)Google Scholar
  4. 4.
    Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 341–371. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-36030-6_14CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set operations over outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 113–130. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_7CrossRefGoogle Scholar
  6. 6.
    Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_28CrossRefGoogle Scholar
  7. 7.
    Couteau, G.: New protocols for secure equality test and comparison. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93387-0_16CrossRefzbMATHGoogle Scholar
  8. 8.
    Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 128–144. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39256-6_9CrossRefGoogle Scholar
  9. 9.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_25CrossRefGoogle Scholar
  10. 10.
    Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28166-7_9CrossRefGoogle Scholar
  11. 11.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ghosh, S., Simkin, M.: The communication complexity of threshold private set intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 3–29. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26951-7_1CrossRefGoogle Scholar
  13. 13.
    Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_6CrossRefGoogle Scholar
  14. 14.
    Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_31CrossRefGoogle Scholar
  15. 15.
    Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersection to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45472-5_13CrossRefGoogle Scholar
  16. 16.
    Le, P.H., Ranellucci, S., Gordon, S.D.: Two-party private set intersection with an untrusted third party. In: CCS (2019)Google Scholar
  17. 17.
    Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_25CrossRefGoogle Scholar
  18. 18.
    Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning. IACR Cryptology ePrint Archive 2018, 403 (2018)Google Scholar
  19. 19.
    Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_6CrossRefGoogle Scholar
  20. 20.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_24CrossRefGoogle Scholar
  21. 21.
    Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991).  https://doi.org/10.1007/BF00196725MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations