Advertisement

Black-Box Constructions of Bounded-Concurrent Secure Computation

Conference paper
  • 218 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

We construct a general purpose secure multiparty computation protocol which remains secure under (a-priori) bounded-concurrent composition and makes only black-box use of cryptographic primitives. Prior to our work, constructions of such protocols required non-black-box usage of cryptographic primitives; alternatively, black-box constructions could only be achieved for super-polynomial simulation based notions of security which offer incomparable security guarantees.

Our protocol has a constant number of rounds and relies on standard polynomial-hardness assumptions, namely, the existence of semi-honest oblivious transfers and collision-resistant hash functions. Previously, such protocols were not known even under sub-exponential assumptions.

Keywords

Multi-party computation Bounded concurrent composition Black-box construction Straight-line extraction 

References

  1. 1.
    Applebaum, B., Brakerski, Z., Garg, S., Ishai, Y., Srinivasan, A.: Separating two-round secure computation from oblivious transfer. In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)Google Scholar
  2. 2.
    Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_25CrossRefGoogle Scholar
  3. 3.
    Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, pp. 106–115. IEEE Computer Society Press (2001).  https://doi.org/10.1109/SFCS.2001.959885
  4. 4.
    Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: 43rd FOCS, pp. 345–355. IEEE Computer Society Press (2002).  https://doi.org/10.1109/SFCS.2002.1181957
  5. 5.
    Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In: 34th ACM STOC, pp. 484–493. ACM Press (2002).  https://doi.org/10.1145/509907.509979
  6. 6.
    Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: 46th FOCS, pp. 543–552. IEEE Computer Society Press (2005).  https://doi.org/10.1109/SFCS.2005.43
  7. 7.
    Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-box simulation technique. In: 53rd FOCS, pp. 223–232. IEEE Computer Society Press (2012).  https://doi.org/10.1109/FOCS.2012.40
  8. 8.
    Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 241–250. ACM Press (2013).  https://doi.org/10.1145/2488608.2488639
  9. 9.
    Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concurrently composable security with shielded super-polynomial simulators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 351–381. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_13CrossRefGoogle Scholar
  10. 10.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001).  https://doi.org/10.1109/SFCS.2001.959888
  11. 11.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_5CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Computer Society Press (2010).  https://doi.org/10.1109/FOCS.2010.86
  13. 13.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_23CrossRefzbMATHGoogle Scholar
  14. 14.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A black-box construction of non-malleable encryption from semantically secure encryption. J. Cryptol. 31(1), 172–201 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 231–240. ACM Press (2013).  https://doi.org/10.1145/2488608.2488638
  16. 16.
    Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76900-2_31CrossRefGoogle Scholar
  17. 17.
    Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_17CrossRefGoogle Scholar
  18. 18.
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC, pp. 409–418. ACM Press (1998).  https://doi.org/10.1145/276698.276853
  19. 19.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: 22nd ACM STOC, pp. 416–426. ACM Press (1990).  https://doi.org/10.1145/100216.100272
  20. 20.
    Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: 41st FOCS, pp. 314–324. IEEE Computer Society Press (2000).  https://doi.org/10.1109/SFCS.2000.892120
  21. 21.
    Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_8CrossRefGoogle Scholar
  22. 22.
    Garg, S., Kiyoshima, S., Pandey, O.: A new approach to black-box concurrent secure computation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 566–599. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_19CrossRefGoogle Scholar
  23. 23.
    Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_25CrossRefGoogle Scholar
  24. 24.
    Garg, S., Liang, X., Pandey, O., Visconti, I.: Black-box constructions of bounded-concurrent secure computation. Cryptology ePrint Archive, Report 2020/216 (2020). https://eprint.iacr.org/2020/216
  25. 25.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press (May 1987).  https://doi.org/10.1145/28395.28420
  26. 26.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press (2011).  https://doi.org/10.1145/1993636.1993729
  27. 27.
    Goyal, V.: Positive results for concurrently secure computation in the plain model. In: 53rd FOCS, pp. 41–50. IEEE Computer Society Press (2012).  https://doi.org/10.1109/FOCS.2012.13
  28. 28.
    Goyal, V., Jain, A.: On concurrently secure computation in the multiple ideal query model. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 684–701. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_40CrossRefGoogle Scholar
  29. 29.
    Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society Press (2012).  https://doi.org/10.1109/FOCS.2012.47
  30. 30.
    Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 260–289. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_12CrossRefGoogle Scholar
  31. 31.
    Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 515–524. ACM Press (2014).  https://doi.org/10.1145/2591796.2591879
  32. 32.
    Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_23CrossRefGoogle Scholar
  33. 33.
    Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hazay, C., Venkitasubramaniam, M.: Composable adaptive secure protocols without setup under polytime assumptions. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 400–432. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_16CrossRefzbMATHGoogle Scholar
  35. 35.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 99–108. ACM Press (2006).  https://doi.org/10.1145/1132516.1132531
  36. 36.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_32CrossRefGoogle Scholar
  37. 37.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_21CrossRefGoogle Scholar
  38. 38.
    Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_20CrossRefGoogle Scholar
  39. 39.
    Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_15CrossRefzbMATHGoogle Scholar
  40. 40.
    Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 189–198. ACM Press (2009).  https://doi.org/10.1145/1536414.1536442
  41. 41.
    Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_27CrossRefGoogle Scholar
  42. 42.
    Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 179–188. ACM Press (2009).  https://doi.org/10.1145/1536414.1536441
  43. 43.
    Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: 35th ACM STOC, pp. 683–692. ACM Press (2003).  https://doi.org/10.1145/780542.780641
  44. 44.
    Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_12CrossRefGoogle Scholar
  45. 45.
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_18CrossRefGoogle Scholar
  46. 46.
    Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: 47th FOCS, pp. 367–378. IEEE Computer Society Press (2006).  https://doi.org/10.1109/FOCS.2006.43
  47. 47.
    Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_17CrossRefGoogle Scholar
  48. 48.
    Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound zero-knowledge arguments from OWFs - the (semi) black-box way. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 345–374. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_15CrossRefGoogle Scholar
  49. 49.
    Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_10CrossRefGoogle Scholar
  50. 50.
    Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Babai, L. (ed.) 36th ACM STOC, pp. 232–241. ACM Press (2004).  https://doi.org/10.1145/1007352.1007393
  51. 51.
    Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_42CrossRefGoogle Scholar
  52. 52.
    Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a constant number of rounds. In: 44th FOCS, pp. 404–415. IEEE Computer Society Press (2003).  https://doi.org/10.1109/SFCS.2003.1238214
  53. 53.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_24CrossRefzbMATHGoogle Scholar
  54. 54.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC, pp. 242–251. ACM Press (2004).  https://doi.org/10.1145/1007352.1007394
  56. 56.
    Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10879-7_26CrossRefGoogle Scholar
  57. 57.
    Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press (2010).  https://doi.org/10.1109/FOCS.2010.87
  58. 58.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986).  https://doi.org/10.1109/SFCS.1986.25

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Stony Brook UniversityStony BrookUSA
  3. 3.University of SalernoFiscianoItaly

Personalised recommendations