Key-and-Argument-Updatable QA-NIZKs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)


There are several new efficient approaches to decreasing trust in the CRS creators for NIZK proofs in the CRS model. Recently, Groth et al. (CRYPTO 2018) defined the notion of NIZK with updatable CRS (updatable NIZK) and described an updatable SNARK. We consider the same problem in the case of QA-NIZKs. We also define an important new property: we require that after updating the CRS, one should be able to update a previously generated argument to a new argument that is valid with the new CRS. We propose a general definitional framework for key-and-argument-updatable QA-NIZKs. After that, we describe a key-and-argument-updatable version of the most efficient known QA-NIZK for linear subspaces by Kiltz and Wee. Importantly, for obtaining soundness, it suffices to update a universal public key that just consists of a matrix drawn from a \(\mathrm {KerMDH}\)-hard distribution and thus can be shared by any pairing-based application that relies on the same hardness assumption. After specializing the universal public key to the concrete language parameter, one can use the proposed key-and-argument updating algorithms to continue updating to strengthen the soundness guarantee.


BPK model CRS model QA-NIZK Subversion security Updatable public key Updatable argument 



We would like to thank Dario Fiore and Markulf Kohlweiss for useful comments. The authors were partially supported by the Estonian Research Council grant (PRG49).


  1. 1.
    Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015). Scholar
  2. 2.
    Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zając, M.: UC-secure CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer, Cham (2019). Scholar
  3. 3.
    Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). Scholar
  4. 4.
    Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On QA-NIZK in the BPK model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 590–620. Springer, Cham (2020). Scholar
  5. 5.
    Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation extractable subversion and updatable SNARKs generically. Technical report 2020/062, IACR (2020)Google Scholar
  6. 6.
    Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). Scholar
  7. 7.
    Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on Security and Privacy, pp. 287–304 (2015)Google Scholar
  8. 8.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). Scholar
  9. 9.
    Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the pinocchio zk-SNARK. Cryptology ePrint Archive, Report 2017/602 (2017).
  10. 10.
    Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050 (2017).
  11. 11.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: 32nd ACM STOC, pp. 235–244 (2000)Google Scholar
  12. 12.
    Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). Scholar
  13. 13.
    Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 314–343. Springer, Cham (2019). Scholar
  14. 14.
    Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with logarithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 527–557. Springer, Cham (2020). Scholar
  15. 15.
    Di Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008). Scholar
  16. 16.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). Scholar
  17. 17.
    Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). Scholar
  18. 18.
    Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019).
  19. 19.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). Scholar
  20. 20.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: 43rd ACM STOC, pp. 99–108 (2011)Google Scholar
  21. 21.
    Gjøsteen, K.: A new security proof for Damgård’s ElGamal. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 150–158. Springer, Heidelberg (2006). Scholar
  22. 22.
    González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups: new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). Scholar
  23. 23.
    González, A., Ráfols, C.: New techniques for non-interactive shuffle and range arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 427–444. Springer, Cham (2016). Scholar
  24. 24.
    Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). Scholar
  25. 25.
    Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). Scholar
  26. 26.
    Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). Scholar
  27. 27.
    Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). Scholar
  28. 28.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). Scholar
  29. 29.
    Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). Scholar
  30. 30.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). Scholar
  31. 31.
    Klenke, A.: Probability Theory: A Comprehensive Course. Universitext, 1st edn. Springer, London (2008)CrossRefGoogle Scholar
  32. 32.
    Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). Scholar
  33. 33.
    Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707. Springer, Heidelberg (2015). Scholar
  34. 34.
    Lipmaa, H.: On the CCA1-security of Elgamal and Damgård’s Elgamal. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 18–35. Springer, Heidelberg (2011). Scholar
  35. 35.
    Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). Scholar
  36. 36.
    Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). Scholar
  37. 37.
    Lipmaa, H.: Key-and-Argument-Updatable QA-NIZKs. Technical report 2019/333, IACR (2019).
  38. 38.
    Lipmaa, H.: Simulation-extractable ZK-SNARKs revisited. Technical report 2019/612, IACR (2019). Accessed 8 Feb 2020
  39. 39.
    Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: ACM CCS 2019, pp. 2111–2128 (2019)Google Scholar
  40. 40.
    Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001). Scholar
  41. 41.
    Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016). Scholar
  42. 42.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). Scholar
  43. 43.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Simula UiBBergenNorway
  2. 2.University of TartuTartuEstonia

Personalised recommendations