Advertisement

Multi-Client Inner-Product Functional Encryption in the Random-Oracle Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

Multi-client functional encryption (MCFE) is an extension of functional encryption (FE) in which the decryption procedure involves ciphertexts from multiple parties. It is particularly useful in the context of data outsourcing and cloud computing where the data may come from different sources and where some data centers or servers may need to perform different types of computation on this data. In order to protect the privacy of the encrypted data, the server, in possession of a functional decryption key, should only be able to compute the final result in the clear, but no other information regarding the encrypted data. In this paper, we consider MCFE schemes supporting encryption labels, which allow the encryptor to limit the amount of possible mix-and-match that can take place during the decryption. This is achieved by only allowing the decryption of ciphertexts that were generated with respect to the same label. This flexible form of FE was already investigated by Chotard et al. at Asiacrypt 2018 and Abdalla et al. at Asiacrypt 2019. The former provided a general construction based on different standard assumptions, but its ciphertext size grows quadratically with the number of clients. The latter gave a MCFE based on Decisional Diffie-Hellman (DDH) assumption which requires a small inner-product space. In this work, we overcome the deficiency of these works by presenting three constructions with linear-sized ciphertexts based on the Matrix-DDH (MDDH), Decisional Composite Residuosity (DCR) and Learning with Errors (LWE) assumption in the random-oracle model. We also implement our constructions to evaluate their concrete efficiency.

Keywords

Functional encryption Multi-client Inner-product functionality Random oracle 

Notes

Acknowledgments

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme FENTEC (Grant Agreement no. 780108), by the European Union’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 339563 – CryptoCloud), and by the French FUI project ANBLIC.

References

  1. 1.
    Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 552–582. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-34618-8_19CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33CrossRefGoogle Scholar
  3. 3.
    Abdalla, M., Bourse, F., Marival, H., Pointcheval, D., Soleimanian, A., Waldner, H.: Multi-client inner-product functional encryption in the random-oracle model. Cryptology ePrint Archive, Report 2020/788 (2020). https://eprint.iacr.org/2020/788
  4. 4.
    Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 597–627. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96884-1_20CrossRefGoogle Scholar
  5. 5.
    Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_21CrossRefGoogle Scholar
  6. 6.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  7. 7.
    Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 173–205. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_7CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  10. 10.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_3CrossRefGoogle Scholar
  11. 11.
    Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03329-3_24CrossRefGoogle Scholar
  12. 12.
    Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive, Report 2018/1021 (2018). https://eprint.iacr.org/2018/1021
  13. 13.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_32CrossRefGoogle Scholar
  14. 14.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (2013).  https://doi.org/10.1109/FOCS.2013.13
  16. 16.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32CrossRefGoogle Scholar
  18. 18.
    Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional encryption. Cryptology ePrint Archive, Report 2013/774 (2013). http://eprint.iacr.org/2013/774
  19. 19.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press (2006).  https://doi.org/10.1145/1180405.1180418, available as Cryptology ePrint Archive Report 2006/309
  20. 20.
    Libert, B., Stehlé, D., Titiu, R.: Adaptively secure distributed PRFs from \({\sf LWE}\). In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 391–421. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03810-6_15
  21. 21.
    Libert, B., Ţiţiu, R.: Multi-client functional encryption for linear functions in the standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-34618-8_18CrossRefzbMATHGoogle Scholar
  22. 22.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556
  23. 23.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp. 195–203. ACM Press (2007).  https://doi.org/10.1145/1315245.1315270
  24. 24.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005).  https://doi.org/10.1145/1060590.1060603
  25. 25.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_4CrossRefGoogle Scholar
  26. 26.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_33CrossRefGoogle Scholar
  27. 27.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.DIENS, École normale supérieure, CNRS, PSL UniversityParisFrance
  2. 2.INRIAParisFrance
  3. 3.University of EdinburghEdinburghUK

Personalised recommendations