Abstract
In the recent years, some security proofs in cryptography have known significant improvements by replacing the statistical distance with alternative divergences. We continue this line of research, both at a theoretical and practical level. On the theory side, we propose a new cryptographic divergence with quirky properties. On the practical side, we propose new applications of alternative divergences: circuit-private FHE and prime number generators. More precisely, we provide the first formal security proof of the prime number generator PRIMEINC [8], and improve by an order of magnitude the efficiency of a prime number generator by Fouque and Tibouchi [16, 17] and the washing machine technique by Ducas and Stehlé [15] for circuit-private FHE.
M. Abboud—Most of this work was done while Marc Abboud was an intern at PQShield.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Typically, additional requirements are mandated, such as \((p + 1)\) and \((p - 1)\) having a large prime factor; but these can be added on top of the sampling procedure.
- 2.
- 3.
- 4.
The work of [7] requires no bootstrapping, but only applies to GSW-based schemes and is restricted to \(\text {NC}^1\).
- 5.
Security-efficiency trade-offs have been presented in [8], and OpenSSL implements a variant of PRIMEINC.
- 6.
This is true without loss of generality; even if more primes are generated and rejected if they fail some requirements (e.g. being safe primes), the adversary only has access to the product of exactly two outputs of the generator (p and q).
- 7.
As stated in the preliminaries, this section will use Vinogradov’s notation, which is common in number theory: \((f \ll _s g) \Leftrightarrow (f =_s O(g))\).
- 8.
One would find it odd that we are not using the proxy amplification property here but the computations we made showed that it wouldn’t give here a significantly better result than the amplification property for this application, so we chose not to complexify the computations done in the proof.
- 9.
References
Agrawal, R., Chen, Y.-H., Horel, T., Vadhan, S.: Unifying computational entropies via Kullback–Leibler divergence. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 831–858. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_28
Ali, S.M., Silvey, S.D.: A general class of coefficients of divergence of one distribution from another. J. Roy. Stat. Soc. Ser. B (Methodol.) 28(1), 131–142 (1966)
Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_1
Bai, S., Lepoint, T., Roux-Langlois, A., Sakzad, A., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. J. Cryptol. 31(2), 610–640 (2018)
Bernstein, D.J., et al.: Factoring RSA keys from certified smart cards: coppersmith in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 341–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_18
Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_9
Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_3
Brandt, J., Damgård, I.: On generation of probable primes by incremental search. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 358–370. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_26
Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer [31], pp. 178–189
Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer [31], pp. 155–165
Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: Motiwalla, J., Tsudik, G. (eds.) ACM CCS 99, pp. 46–51. ACM Press, November 1999
Csiszár, I.: Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der ergodizitat von markoffschen ketten. Magyar. Tud. Akad. Mat. Kutató Int. Közl, 8, 85–108 (1963)
Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via the chi-squared method. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 497–523. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_17
Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2
Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_12
Fouque, P.-A., Tibouchi, M.: Close to uniform prime number generation with fewer random bits. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 991–1002. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_82
Fouque, P.-A., Tibouchi, M.: Close to uniform prime number generation with fewer random bits. IEEE Trans. Inf. Theor. 65(2), 1307–1317 (2019)
Friedlander, J., Granville, A.: Limitations to the equi-distribution of primes I. Ann. Math. 129(2), 363–382 (1989)
Gallagher, P.X.: On the distribution of primes in short intervals. Mathematika 23(1), 4–9 (1976)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009
Gerchinovitz, S., Ménard, P., Stoltz, G.: Fano’s inequality for random variables (2017). https://arxiv.org/abs/1702.05985
Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27
Hardy, G.H., Littlewood, J.E.: Some problems of ‘partitio numerorum’; iii: On the expression of a number as a sum of primes. Acta Math. 44, 1–70 (1923)
Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining your Ps and Qs: detection of widespread weak keys in network devices. In: Kohno, T. (ed.) USENIX Security 2012, pp. 205–220. USENIX Association, August 2012
Joux, A.: Fully homomorphic encryption modulo Fermat numbers. Cryptology ePrint Archive, Report 2019/187 (2019). https://eprint.iacr.org/2019/187
Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_14
Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 626–642. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_37
Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012). http://eprint.iacr.org/2012/064
Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k-LWE and applications in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 315–334. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_18
Matsuda, T., Takahashi, K., Murakami, T., Hanaoka, G.: Improved security evaluation techniques for imperfect randomness from arbitrary distributions. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 549–580. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_19
Maurer, U.M. (ed.): EUROCRYPT ’96. LNCS, vol. 1070. Springer, Heidelberg (1996)
Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic, constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_16
Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_1
Mihailescu, P.: Fast generation of provable primes using search in arithmetic progressions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 282–293. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_27
Mironov, I.: Renyi differential privacy. In: Proceedings of 30th IEEE Computer Security Foundations Symposium (2017). http://arxiv.org/abs/1702.07476
Morimoto, T.: Markov processes and the h-theorem. J. Phys. Soc. Japan 18(3), 328–331 (1963)
Nemec, M., Sýs, M., Svenda, P., Klinec, D., Matyas, V.: The return of coppersmith’s attack: practical factorization of widely used RSA moduli. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1631–1648. ACM Press, October/November 2017
Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_20
Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi divergence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 347–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_13
Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models on a Rényi day. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 683–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_24
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978)
Skórski, M.: Shannon entropy versus Renyi entropy from a cryptographic viewpoint. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 257–274. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_16
Steinberger, J.: Improved security bounds for key-alternating ciphers via hellinger distance. Cryptology ePrint Archive, Report 2012/481 (2012). http://eprint.iacr.org/2012/481
Takashima, K., Takayasu, A.: Tighter security for efficient lattice cryptography via the Rényi divergence of optimized orders. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 412–431. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_23
Vajda, I.: \(\chi \)\(\alpha \)-divergence and generalized fisher information. In: Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, p. 223. Academia (1973)
van Erven, T., Harremoës, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theor. 60(7), 3797–3820 (2014)
Acknowledgements
The authors are indebted to Takahiro Matsuda and Shuichi Katsumata for their insightful discussions and for pointing out a flaw in an earlier version of the paper. Thomas Prest is supported by the Innovate UK Research Grant 104423 (PQ Cybersecurity).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Abboud, M., Prest, T. (2020). Cryptographic Divergences: New Techniques and New Applications. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-57990-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57989-0
Online ISBN: 978-3-030-57990-6
eBook Packages: Computer ScienceComputer Science (R0)