Advertisement

Anonymous Symmetric-Key Communication

Conference paper
  • 240 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

We study anonymity of probabilistic encryption (pE) and probabilistic authenticated encryption (pAE). We start by providing concise game-based security definitions capturing anonymity for both pE and pAE, and then show that the commonly used notion of indistinguishability from random ciphertexts (IND$) indeed implies the anonymity notions for both pE and pAE. This is in contrast to a recent work of Chan and Rogaway (Asiacrypt 2019), where it is shown that IND$-secure nonce-based authenticated encryption can only achieve anonymity if a sophisticated transformation is applied. Moreover, we also show that the Encrypt-then-MAC paradigm is anonymity-preserving, in the sense that if both the underlying probabilistic MAC (pMAC) and pE schemes are anonymous, then also the resulting pAE scheme is. Finally, we provide a composable treatment of anonymity using the constructive cryptography framework of Maurer and Renner (ICS 2011). We introduce adequate abstractions modeling various kinds of anonymous communication channels for many senders and one receiver in the presence of an active man-in-the-middle adversary. Then we show that the game-based notions indeed are anonymity-preserving, in the sense that they imply constructions between such anonymous channels, thus generating authenticity and/or confidentiality as expected, but crucially retaining anonymity if present.

References

  1. 1.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44929-9_1CrossRefzbMATHGoogle Scholar
  2. 2.
    Alagic, G., Gagliardoni, T., Majenz, C.: Unforgeable quantum encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 489–519. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78372-7_16CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Key-indistinguishable message authentication codes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 476–493. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10879-7_27CrossRefGoogle Scholar
  4. 4.
    Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Anonymous authentication with shared secrets. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 219–236. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16295-9_12CrossRefGoogle Scholar
  5. 5.
    Banfi, F., Maurer, U.: Anonymous symmetric-key communication. Cryptology ePrint Archive, Report 2020/073 (2020). https://eprint.iacr.org/2020/073
  6. 6.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: Proceedings 38th Annual Symposium on Foundations of Computer Science – FOCS 1997, pp. 394–403, October 1997Google Scholar
  7. 7.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_33CrossRefzbMATHGoogle Scholar
  8. 8.
    Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_41CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 247–276. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_10CrossRefzbMATHGoogle Scholar
  10. 10.
    Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss, M.: State separation for code-based game-playing proofs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 222–249. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03332-3_9CrossRefGoogle Scholar
  11. 11.
    Chan, J., Rogaway, P.: Anonymous AE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 183–208. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-34621-8_7CrossRefGoogle Scholar
  12. 12.
    Desai, A.: The security of all-or-nothing encryption: protecting against exhaustive key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 359–375. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_23CrossRefGoogle Scholar
  13. 13.
    Fischlin, M.: Pseudorandom function tribe ensembles based on one-way permutations: improvements and applications. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 432–445. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_30CrossRefGoogle Scholar
  14. 14.
    Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM, revisited: tight bounds for nonce randomization. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security – CCS 2018, pp. 1429–1440. Association for Computing Machinery, New York (2018)Google Scholar
  15. 15.
    Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_19CrossRefGoogle Scholar
  16. 16.
    Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_8CrossRefGoogle Scholar
  17. 17.
    Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27375-9_3CrossRefzbMATHGoogle Scholar
  18. 18.
    Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_8CrossRefGoogle Scholar
  19. 19.
    Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Theoretical Computer Science – ICS 2011, pp. 1–21. Tsinghua University Press (2011)Google Scholar
  20. 20.
    Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25937-4_22CrossRefzbMATHGoogle Scholar
  21. 21.
    Rogaway, P.: Evaluation of some blockcipher modes of operation. Cryptography Research and Evaluation Committees (CRYPTREC) for the Government of Japan (2011). https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf
  22. 22.
    Rogaway, P.: The evolution of authenticated encryption. In: Workshop on Real-World Cryptography (2013). https://crypto.stanford.edu/RealWorldCrypto/slides/phil.pdf
  23. 23.
    Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_23CrossRefGoogle Scholar
  24. 24.
    Rosulek, M.: The joy of cryptography. Oregon State University EOR (2018). http://web.engr.oregonstate.edu/~rosulekm/crypto/
  25. 25.
    Shrimpton, T.: A characterization of authenticated-encryption as a form of chosen-ciphertext security. Cryptology ePrint Archive, Report 2004/272 (2004). https://eprint.iacr.org/2004/272

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceZurichSwitzerland

Personalised recommendations