Advertisement

Account Management in Proof of Stake Ledgers

Conference paper
  • 268 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

Blockchain protocols based on Proof-of-Stake (PoS) depend—by nature—on the active participation of stakeholders. If users are offline and abstain from the PoS consensus mechanism, the system’s security is at risk, so it is imperative to explore ways to both maximize the level of participation and minimize the effects of non-participation. One such option is stake representation, such that users can delegate their participation rights and, in the process, form “stake pools”. The core idea is that stake pool operators always participate on behalf of regular users, while the users retain the ownership of their assets. Our work provides a formal PoS wallet construction that enables delegation and stake pool formation. While investigating the construction of addresses in this setting, we distil and explore address malleability, a security property that captures the ability of an attacker to manipulate the delegation information associated with an address. Our analysis consists of identifying multiple levels of malleability, which are taken into account in our paper’s core result. We then introduce the first ideal functionality of a PoS wallet’s core which captures the PoS wallet’s capabilities and is realized as a secure protocol based on standard cryptographic primitives. Finally, consider the wallet core in conjunction with a PoS ledger and investigate how delegation and stake pools affect a PoS system’s security.

References

  1. 1.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: On the malleability of bitcoin transactions. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 1–18. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48051-9_1CrossRefGoogle Scholar
  2. 2.
    Arapinis, M., Gkaniatsou, A., Karakostas, D., Kiayias, A.: A formal treatment of hardware wallets. In: Goldberg and Moore [26], pp. 426–445.  https://doi.org/10.1007/978-3-030-32101-7_26
  3. 3.
    Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: composable proof-of-stake blockchains with dynamic availability. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 913–930. ACM, New York (2018).  https://doi.org/10.1145/3243734.3243848. http://doi.acm.org/10.1145/3243734.3243848
  4. 4.
    Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_28CrossRefGoogle Scholar
  5. 5.
    Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Cryptology ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.org/2016/919
  6. 6.
    Bruenjes, L., Kiayias, A., Koutsoupias, E., Stouka, A.P.: Reward sharing schemes for stake pools. Computer Science and Game Theory (cs.GT) arXiv:1807.11218 (2018)
  7. 7.
    Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR abs/1710.09437 (2017). http://arxiv.org/abs/1710.09437
  8. 8.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 14–17 October 2001, pp. 136–145. IEEE Computer Society Press (2001).  https://doi.org/10.1109/SFCS.2001.959888
  9. 9.
    Canetti, R.: Universally composable signatures, certification and authentication. Cryptology ePrint Archive, Report 2003/239 (2003). http://eprint.iacr.org/2003/239
  10. 10.
    Chakravarty, M.M.T., et al.: Hydra: fast isomorphic state channels. Cryptology ePrint Archive, Report 2020/299 (2020). https://eprint.iacr.org/2020/299
  11. 11.
    Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT: super fast and partition resilient byzantine agreement. Cryptology ePrint Archive, Report 2018/377 (2018). https://eprint.iacr.org/2018/377
  12. 12.
    Community, E.: Eos.io technical white paper v2 (2018). https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
  13. 13.
    Courtois, N.T., Emirdag, P., Valsorda, F.: Private key recovery combination attacks: on extreme fragility of popular bitcoin key management, wallet and cold storage solutions in presence of poor RNG events. Cryptology ePrint Archive, Report 2014/848 (2014). http://eprint.iacr.org/2014/848
  14. 14.
    Das, P., Faust, S., Loss, J.: A formal treatment of deterministic wallets. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and Communications Security, 11–15 November 2019, pp. 651–668. ACM Press (2019).  https://doi.org/10.1145/3319535.3354236
  15. 15.
    David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake protocol. Cryptology ePrint Archive, Report 2017/573 (2017). http://eprint.iacr.org/2017/573
  16. 16.
    Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 313–326. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11212-1_18CrossRefGoogle Scholar
  17. 17.
    decred.org: Decred–an autonomous digital currency (2019). https://decred.org
  18. 18.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Rev. 45(4), 727–784 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45748-8_24CrossRefGoogle Scholar
  20. 20.
    Ethereum: Glossary: Account nonce (2018). https://github.com/ethereum/wiki/wiki/Glossary
  21. 21.
    Ethereum: Proof of stake FAQs (2018). https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
  22. 22.
    Fanti, G.C., Kogan, L., Oh, S., Ruan, K., Viswanath, P., Wang, G.: Compounding of wealth in proof-of-stake cryptocurrencies. In: Goldberg and Moore [26], pp. 42–61.  https://doi.org/10.1007/978-3-030-32101-7_3
  23. 23.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_10CrossRefGoogle Scholar
  24. 24.
    Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz and Shacham [30], pp. 291–323.  https://doi.org/10.1007/978-3-319-63688-7_10
  25. 25.
    Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454 (2017). http://eprint.iacr.org/2017/454
  26. 26.
    Goldberg, I., Moore, T. (eds.): FC 2019. LNCS, vol. 11598. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-32101-7CrossRefGoogle Scholar
  27. 27.
    Goldwasser, S., Micali, S., Rivest, R.L.: A “paradoxical” solution to the signature problem (abstract) (impromptu talk). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, p. 467. Springer, Heidelberg (1984)Google Scholar
  28. 28.
    Goodman, L.: Tezos—a self-amending crypto-ledger white paper (2014)Google Scholar
  29. 29.
    Gutoski, G., Stebila, D.: Hierarchical deterministic bitcoin wallets that tolerate key leakage. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 497–504. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47854-7_31CrossRefGoogle Scholar
  30. 30.
    Katz, J., Shacham, H. (eds.): CRYPTO 2017, Part I. LNCS, vol. 10401. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7CrossRefzbMATHGoogle Scholar
  31. 31.
    Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros Crypsinous: privacy-preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 19–23 May 2019, pp. 157–174. IEEE Computer Society Press (2019).  https://doi.org/10.1109/SP.2019.00063
  32. 32.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz and Shacham [30], pp. 357–388.  https://doi.org/10.1007/978-3-319-63688-7_12
  33. 33.
    Maxwell, G., et al.: Deterministic wallets (2014) Google Scholar
  34. 34.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  35. 35.
    Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_22CrossRefzbMATHGoogle Scholar
  36. 36.
    Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_14CrossRefGoogle Scholar
  37. 37.
    Reed, D., Sporny, M., Longley, D., Allen, C., Grant, R., Sabadello, M.: Decentralized identifiers (DIDs) v0. 11. W3C, Draft Community Group Report, vol. 9 (2018)Google Scholar
  38. 38.
    Steem: Steem whitepaper (2018). https://steem.com/steem-whitepaper.pdf
  39. 39.
    Van Saberhagen, N.: Cryptonote v 2.0 (2013)Google Scholar
  40. 40.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum project yellow paper, vol. 151, pp. 1–32 (2014)Google Scholar
  41. 41.
    Wuille, P.: Hierarchical Deterministic Wallets (2017). Online January 2020. https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of EdinburghEdinburghUK
  2. 2.Tokyo Institute of TechnologyTokyoJapan
  3. 3.IOHKWan ChaiHong Kong

Personalised recommendations