Skip to main content

Double-Authentication-Preventing Signatures in the Standard Model

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12238))

Included in the following conference series:

Abstract

A double-authentication preventing signature (DAPS) scheme is a digital signature scheme equipped with a self-enforcement mechanism. Messages consist of an address and a payload component, and a signer is penalized if she signs two messages with the same addresses but different payloads. The penalty is the disclosure of the signer’s signing key. Most of the existing DAPS schemes are proved secure in the random oracle model (ROM), while the efficient ones in the standard model only support address spaces of polynomial size.

We present DAPS schemes that are efficient, secure in the standard model under standard assumptions and support large address spaces. Our main construction builds on vector commitments (VC) and double-trapdoor chameleon hash functions (DCH). We also provide a DAPS realization from Groth-Sahai (GS) proofs that builds on a generic construction by Derler et al., which they instantiate in the ROM. The GS-based construction, while less efficient than our main one, shows that a general yet efficient instantiation of DAPS in the standard model is possible.

An interesting feature of our main construction is that it can be easily modified to guarantee security even in the most challenging setting where no trusted setup is provided. It seems to be the first construction achieving this in the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [19] these two parts are referred as subject and message, and in  [20] as context and statement. Here we are following the terminologies from  [18].

References

  1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  2. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 121–151. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_5

    Chapter  Google Scholar 

  3. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_25

    Chapter  Google Scholar 

  4. Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations: self-enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 457–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_23

    Chapter  Google Scholar 

  5. Bresson, E., Catalano, D., Gennaro, R.: Improved on-line/off-line threshold signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 217–232. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_15

    Chapter  Google Scholar 

  6. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signatures: theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_7

    Chapter  Google Scholar 

  7. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  8. Catalano, D., Gennaro, R.: Cramer-Damgård signatures revisited: efficient flat-tree signatures based on factoring. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 313–327. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_22

    Chapter  Google Scholar 

  9. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_25

    Chapter  Google Scholar 

  10. Cramer, R., Damgård, I.: New generation of secure and practical RSA-based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_14

    Chapter  Google Scholar 

  11. Derler, D., Ramacher, S., Slamanig, D.: Generic double-authentication preventing signatures and a post-quantum instantiation. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 258–276. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_15

    Chapter  Google Scholar 

  12. Derler, D., Ramacher, S., Slamanig, D.: Short double- and n-times-authentication-preventing signatures from ECDSA and more. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P 2018), London, United Kingdom, 24–26 April 2018, pp. 273–287 (2018)

    Google Scholar 

  13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  14. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  15. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society, February 2000

    Google Scholar 

  16. Li, F., Gao, W., Wang, G., Chen, K., Tang, C.: Double-authentication-preventingsignatures revisited: new definition and construction from chameleon hash. Front. IT EE 20(2), 176–186 (2019). https://doi.org/10.1631/FITEE.1700005

    Article  Google Scholar 

  17. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October 1997. https://doi.org/10.1109/SFCS.1997.646134

  18. Poettering, B.: Shorter double-authentication preventing signatures for small address spaces. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 344–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_19

    Chapter  Google Scholar 

  19. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 436–453. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_25

    Chapter  Google Scholar 

  20. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire! Penalizing equivocation by loss of bitcoins. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp. 219–230. ACM Press, October 2015. https://doi.org/10.1145/2810103.2813686

  21. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    Chapter  Google Scholar 

Download references

Acknowledgments

The first author is supported by the Programma ricerca di ateneo UNICT 2020-22 linea 2. The second author is supported by the Vienna Science and Technology Fund (WWTF) through project VRG18-002. The third author is supported by the European Union’s Horizon 2020 Project FENTEC (Grant Agreement no. 780108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Soleimanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Catalano, D., Fuchsbauer, G., Soleimanian, A. (2020). Double-Authentication-Preventing Signatures in the Standard Model. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57990-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57989-0

  • Online ISBN: 978-3-030-57990-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics