Advertisement

Double-Authentication-Preventing Signatures in the Standard Model

Conference paper
  • 250 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

A double-authentication preventing signature (DAPS) scheme is a digital signature scheme equipped with a self-enforcement mechanism. Messages consist of an address and a payload component, and a signer is penalized if she signs two messages with the same addresses but different payloads. The penalty is the disclosure of the signer’s signing key. Most of the existing DAPS schemes are proved secure in the random oracle model (ROM), while the efficient ones in the standard model only support address spaces of polynomial size.

We present DAPS schemes that are efficient, secure in the standard model under standard assumptions and support large address spaces. Our main construction builds on vector commitments (VC) and double-trapdoor chameleon hash functions (DCH). We also provide a DAPS realization from Groth-Sahai (GS) proofs that builds on a generic construction by Derler et al., which they instantiate in the ROM. The GS-based construction, while less efficient than our main one, shows that a general yet efficient instantiation of DAPS in the standard model is possible.

An interesting feature of our main construction is that it can be easily modified to guarantee security even in the most challenging setting where no trusted setup is provided. It seems to be the first construction achieving this in the standard model.

Keywords

Double-spending Digital signature Cryptocurrencies Certificate subversion 

Notes

Acknowledgments

The first author is supported by the Programma ricerca di ateneo UNICT 2020-22 linea 2. The second author is supported by the Vienna Science and Technology Fund (WWTF) through project VRG18-002. The third author is supported by the European Union’s Horizon 2020 Project FENTEC (Grant Agreement no. 780108).

References

  1. 1.
    Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_17CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 121–151. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_5CrossRefGoogle Scholar
  3. 3.
    Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_25CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations: self-enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 457–477. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_23CrossRefGoogle Scholar
  5. 5.
    Bresson, E., Catalano, D., Gennaro, R.: Improved on-line/off-line threshold signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 217–232. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_15CrossRefGoogle Scholar
  6. 6.
    Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signatures: theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78440-1_7CrossRefGoogle Scholar
  7. 7.
    Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_5CrossRefGoogle Scholar
  8. 8.
    Catalano, D., Gennaro, R.: Cramer-Damgård signatures revisited: efficient flat-tree signatures based on factoring. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 313–327. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30580-4_22CrossRefGoogle Scholar
  9. 9.
    Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_25CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Damgård, I.: New generation of secure and practical RSA-based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_14CrossRefGoogle Scholar
  11. 11.
    Derler, D., Ramacher, S., Slamanig, D.: Generic double-authentication preventing signatures and a post-quantum instantiation. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 258–276. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01446-9_15CrossRefGoogle Scholar
  12. 12.
    Derler, D., Ramacher, S., Slamanig, D.: Short double- and n-times-authentication-preventing signatures from ECDSA and more. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P 2018), London, United Kingdom, 24–26 April 2018, pp. 273–287 (2018)Google Scholar
  13. 13.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  14. 14.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  15. 15.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society, February 2000Google Scholar
  16. 16.
    Li, F., Gao, W., Wang, G., Chen, K., Tang, C.: Double-authentication-preventingsignatures revisited: new definition and construction from chameleon hash. Front. IT EE 20(2), 176–186 (2019).  https://doi.org/10.1631/FITEE.1700005CrossRefGoogle Scholar
  17. 17.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October 1997.  https://doi.org/10.1109/SFCS.1997.646134
  18. 18.
    Poettering, B.: Shorter double-authentication preventing signatures for small address spaces. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 344–361. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89339-6_19CrossRefGoogle Scholar
  19. 19.
    Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 436–453. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11203-9_25CrossRefGoogle Scholar
  20. 20.
    Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire! Penalizing equivocation by loss of bitcoins. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp. 219–230. ACM Press, October 2015.  https://doi.org/10.1145/2810103.2813686
  21. 21.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Informatica – Università di CataniaCataniaItaly
  2. 2.TU WienViennaAustria
  3. 3.Inria de ParisParisFrance
  4. 4.École normale supérieure, CNRS, PSL UniversityParisFrance

Personalised recommendations