Advertisement

Gradual GRAM and Secure Computation for RAM Programs

Conference paper
  • 230 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

Despite the fact that the majority of applications encountered in practice today are captured more efficiently by RAM programs, the area of secure two-party computation (2PC) has seen tremendous improvement mostly when the function is represented by Boolean circuits. One of the most studied objects in this domain is garbled circuits. Analogously, garbled RAM (GRAM) provide similar security guarantees for RAM programs with applications to constant round 2PC. In this work we consider the notion of gradual GRAM which requires no memory garbling algorithm. Our approach provides several qualitative advantages over prior works due to the conceptual similarity to the analogue garbling mechanism for Boolean circuits. We next revisit the GRAM construction from [11] and improve it in two orthogonal aspects: match it directly with tree-based ORAMs and explore its consistency with gradual ORAM.

References

  1. 1.
    Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_27CrossRefGoogle Scholar
  2. 2.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513 (1990)Google Scholar
  3. 3.
    Chung, K.-M., Pass, R.: A simple ORAM. IACR Cryptology ePrint Archive 2013/243 (2013)Google Scholar
  4. 4.
    Cook, S.A., Reckhow, R.A.: Time-bounded random access machines. In: STOC, pp. 73–80 (1972)Google Scholar
  5. 5.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40203-6_1CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_10CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_38CrossRefGoogle Scholar
  8. 8.
    Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS, pp. 523–535 (2017)Google Scholar
  9. 9.
    Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 491–520. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_19CrossRefGoogle Scholar
  10. 10.
    Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: FOCS, pp. 210–229 (2015)Google Scholar
  11. 11.
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: STOC, pp. 449–458 (2015)Google Scholar
  12. 12.
    Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimizing ORAM and using it efficiently for secure computation. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39077-7_1CrossRefGoogle Scholar
  13. 13.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_23CrossRefGoogle Scholar
  14. 14.
    Goldreich, O.: Towards a theory of software protection and simulation by oblivious rams. In: STOC, pp. 182–194 (1987)Google Scholar
  15. 15.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gordon, S.D., et al.: Secure two-party computation in sublinear (amortized) time. In: CCS, pp. 513–524 (2012)Google Scholar
  18. 18.
    Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard assumptions. In: CCS, pp. 567–578 (2015)Google Scholar
  19. 19.
    Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits with constant communication overhead in the plain model. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_1CrossRefGoogle Scholar
  20. 20.
    Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_21CrossRefGoogle Scholar
  21. 21.
    Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 521–553. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_20CrossRefGoogle Scholar
  22. 22.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_23CrossRefGoogle Scholar
  23. 23.
    Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_27CrossRefGoogle Scholar
  24. 24.
    Keller, M., Yanai, A.: Efficient maliciously secure multiparty computation for RAM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 91–124. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78372-7_4CrossRefGoogle Scholar
  25. 25.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_40CrossRefzbMATHGoogle Scholar
  26. 26.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_4CrossRefzbMATHGoogle Scholar
  27. 27.
    Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_16CrossRefGoogle Scholar
  28. 28.
    Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient RAM-model secure computation. In: IEEE Symposium on Security and Privacy, pp. 623–638 (2014)Google Scholar
  29. 29.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_42CrossRefGoogle Scholar
  30. 30.
    Miao, P.: Cut-and-choose for garbled RAM. IACR Cryptology ePrint Archive 2016/907 (2016)Google Scholar
  31. 31.
    Moataz, T., Mayberry, T., Blass, E.-O., Chan, A.H.: Resizable tree-based oblivious RAM. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 147–167. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47854-7_9CrossRefGoogle Scholar
  32. 32.
    Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online and batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 425–455. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_15CrossRefzbMATHGoogle Scholar
  33. 33.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_40CrossRefGoogle Scholar
  34. 34.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_22CrossRefGoogle Scholar
  35. 35.
    Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC, pp. 514–523 (1990)Google Scholar
  36. 36.
    Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with online/offline dual execution. In: USENIX, pp. 297–314 (2016)Google Scholar
  38. 38.
    Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. J. ACM 65(4), 18:1–18:26 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, X., Chan, T.-H.H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-Ostrovsky lower bound. In: CCS, pp. 850–861 (2015)Google Scholar
  40. 40.
    Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation in the single-execution setting. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 399–424. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_14CrossRefzbMATHGoogle Scholar
  41. 41.
    Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously secure two-party computation. In: CCS, pp. 21–37 (2017)Google Scholar
  42. 42.
    Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: CCS, pp. 39–56 (2017)Google Scholar
  43. 43.
    Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM: oblivious RAM for secure computation. In: CCS, pp. 191–202 (2014)Google Scholar
  44. 44.
    Wang, X.S., et al.: Oblivious data structures. In: CCS, pp. 215–226 (2014)Google Scholar
  45. 45.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar
  46. 46.
    Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_8CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations