Advertisement

UC-Secure OT from LWE, Revisited

Conference paper
  • 215 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12238)

Abstract

We build a two-round, UC-secure oblivious transfer protocol (OT) in the common reference string (CRS) model under the Learning with Errors assumption (LWE) with super-polynomial modulus-to-noise ratio. We do so by instantiating the dual-mode encryption framework of Peikert, Vaikuntanathan and Waters (CRYPTO’08). The resulting OT can be instantiated in either one of two modes: one providing statistical sender security, and the other statistical receiver security. Furthermore, our scheme allows the sender and the receiver to reuse the CRS across arbitrarily many executions of the protocol. To our knowledge, this is the first construction of an UC-secure OT from LWE that achieves either statistical receiver security or unbounded reusability of the CRS. For comparison, the construction of UC-secure OT from LWE of Peikert, Vaikuntanathan and Waters only provides computational receiver security and bounded reusability of the CRS.

Our main technical contribution is a public-key encryption scheme from LWE where messy public keys (under which encryptions hide the underlying message statistically) can be tested in time essentially independent of the LWE modulus q.

Notes

Acknowledgements

We thank Vinod Vaikuntanathan and Daniel Wichs for helpful discussions and comments about this work. Part of this work was done while the author was visiting the Simons Institute for the Theory of Computing for the Spring 2020 program “Lattices: Algorithms, Complexity, and Cryptography”.

References

  1. [AJL+12]
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval and Johansson [PJ12], pp. 483–501Google Scholar
  2. [AR03]
    Aharonov, D., Regev, O.: A lattice problem in quantum NP. In: 44th FOCS, pp. 210–219. IEEE Computer Society Press, October 2003Google Scholar
  3. [BBDQ18]
    Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 644–674. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_22CrossRefGoogle Scholar
  4. [BD18]
    Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03810-6_14CrossRefGoogle Scholar
  5. [Can01]
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001Google Scholar
  6. [CCH+19]
    Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: 51st ACM STOC, pp. 1082–1090. ACM Press (2019)Google Scholar
  7. [CR03]
    Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_16CrossRefGoogle Scholar
  8. [CS98]
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055717CrossRefGoogle Scholar
  9. [CS02]
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  10. [DGH+20]
    Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-45724-2_26CrossRefGoogle Scholar
  11. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987Google Scholar
  12. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008Google Scholar
  13. [Kal05]
    Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_5CrossRefGoogle Scholar
  14. [MP12]
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval and Johansson [PJ12], pp. 700–718Google Scholar
  15. [MR04]
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October 2004Google Scholar
  16. [Pas13]
    Pass, R.: Unprovable security of perfect NIZK and non-interactive non-malleable commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_19CrossRefzbMATHGoogle Scholar
  17. [Pei08]
    Peikert, C.: Limits on the hardness of lattice problems in LP norms. Comput. Complex. 17(2), 300–351 (2008)CrossRefGoogle Scholar
  18. [PJ12]
    Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  19. [PS19]
    Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (Plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26948-7_4CrossRefGoogle Scholar
  20. [PVW08]
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_31CrossRefGoogle Scholar
  21. [Rab81]
    Rabin, M.O.: How to Exchange Secrets with Oblivious Transfer, 1981. Harvard Aiken Computational Laboratory TR-81Google Scholar
  22. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005Google Scholar
  23. [Sch87]
    Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53(2), 201–224 (1987)MathSciNetCrossRefGoogle Scholar
  24. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Northeastern UniversityBostonUSA

Personalised recommendations