Skip to main content

Comparing Human Wayfinding Behavior Between a Real, Existing Building, a Virtual Replica, and Two Architectural Redesigns

  • Conference paper
  • First Online:
Spatial Cognition XII (Spatial Cognition 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12162))

Included in the following conference series:

Abstract

While virtual reality (VR) is increasingly being used for behavioral studies and pre-occupancy evaluations, the correspondence of wayfinding behavior between real and virtual environments is yet understudied. In this chapter, we report a post- and pre-occupancy evaluation that compares wayfinding behavior in a real, existing building to three virtually simulated buildings: one replication of the real building and two architectural design variations of the same building. We focus on comparing the conditions with respect to their effect on a) the distance above a shortest, optimal path, and key wayfinding decisions, as well as b) absolute angular pointing errors. Preliminary results indicate that the virtual replica represented the real building, as the result patterns were generally comparable. Yet, the redesigns did not evoke a better wayfinding performance.

S. Kuliga—Contributed to this chapter during a postdoc fellowship of the German Academic Exchange Service (DAAD), at the Future Cities Laboratory, Singapore-ETH Centre, which was established collaboratively between ETH Zurich and Singapore’s National Research Foundation (FI 370074016) under its Campus for Research Excellence and Technological Enterprise programme. For the study conduction, we appreciate prior funding of the former transregional research centre, SFB/TR8/R6 ‘Spatial Cognition’, as well as the Center for Cognitive Science at the University of Freiburg, in collaboration with ETH Zurich. For finalizing the VR models, we mainly would like to thank Alexander Dummer. For student research assistants, we thank Vincent Langenfeld, Michael Rist, and Nicolas Holland for extra updating of the models and scripts, and Saskia Leymann, Jacob Henschel, Julia Asbrand, Sascha Crede, Jana Wendler, Wibke Hachmann, and Celeste Richard for support with data collection or data preparation. We thank the participants who potentially have been lost, and anyone who supported discussions about this building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Westerdahl, B., Suneson, K., Wernemyr, C., Roupé, M., Johansson, M., Allwood, C.M.: Users’ evaluation of a virtual reality architectural model compared with the experience of the completed building. Autom. Constr. 15(2), 150–165 (2006). https://doi.org/10.1016/j.autcon.2005.02.010

    Article  Google Scholar 

  2. Kort, Y.A., Ijsselsteijn, W.A., Kooijman, J., Schuurmans, Y.: Virtual laboratories: comparability of real and virtual environments for environmental psychology. Presence: Teleoperators Virtual Environ. 12(4), 360–373 (2003). https://doi.org/10.1162/105474603322391604

    Article  Google Scholar 

  3. Bishop, I.D., Rohrmann, B.: Subjective responses to simulated and real environments: a comparison. Landsc. Urban Plan. 65(4), 261–277 (2003). https://doi.org/10.1016/S0169-2046(03)00070-7

    Article  Google Scholar 

  4. Skorupka, A.: Comparing human wayfinding behavior in real and virtual environment. In: Koch, D., Marcus, L., Steen, J. (eds.) Proceedings of the 7th International Space Syntax Symposium, vol. 104, pp. 1–7. KTH Royal Institute of Technology, Stockholm (2009). http://sss7.org/Proceedings/10%20Architectural%20Research%20and%20Architectural%20Design/104_Skorupka.pdf. Accessed 22 June 2020

  5. Haq, S., Hill, G., Pramanik, A.: Comparison of configurational, wayfinding and cognitive correlates in real and virtual settings. In: van Ness, A. (ed.) Proceedings of the 5th International Space Syntax Symposium, vol. 2, pp. 387–405 (2005). http://spacesyntax.tudelft.nl/media/longpapers2/saifhaqea.pdf. Accessed 22 June 2020

  6. Conroy Dalton, R.: Spatial navigation in immersive virtual environments. Ph.D. thesis, Bartlett School of Graduate Studies, University of London (2001). https://eprints.lancs.ac.uk/id/eprint/141602. Accessed 22 June 2020

  7. Witmer, B.G., Bailey, J.H., Knerr, B.W., Parsons, K.C.: Virtual spaces and real world places: transfer of route knowledge. Int. J. Hum.-Comput. Stud. 45(4), 413–428 (1996). https://doi.org/10.1006/ijhc.1996.0060

    Article  Google Scholar 

  8. Lazaridou, A., Psarra, S.: Spatial navigation in real and virtual multi-level museums. In: Heitor, T., Serra, M., Silva, J.P., Bacharel, M., da Silva L.C. (eds.) Proceedings of the 11th International Space Syntax Symposium, vol. 14, pp. 1–18. Instituto Superior Tecnico, Lisbon (2017). https://discovery.ucl.ac.uk/10038355/1/Lazaridou_Psarra.pdf. Accessed 22 June 2020

  9. Li, H., Thrash, T., Hölscher, C., Schinazi, V.R.: The effect of crowdedness on human wayfinding and locomotion in a multi-level virtual shopping mall. J. Environ. Psychol. 65(101320), 1–9 (2019). https://doi.org/10.1016/j.jenvp.2019.101320

    Article  Google Scholar 

  10. Weibel, R.P., et al.: Virtual reality experiments with physiological measures. J. Vis. Exp. 138, e58318 (2018). https://doi.org/10.3791/58318

    Article  Google Scholar 

  11. Schneider, S., Kuliga, S., Weiser, R., Kammler, O., Fuchkina, E.: VREVAL-A BIM-based framework for user-centered evaluation of complex buildings in virtual environments. In: Kepczynska-Walczak, A., Bialkowski, S. (eds.) Computing for a Better Tomorrow - Proceedings of the 36th eCAADe Conference, vol. 2, pp. 833–842. Lodz University of Technology, Lodz (2018). http://papers.cumincad.org/data/works/att/ecaade2018_361.pdf. Accessed 22 June 2020

  12. Chamilothori, K., Wienold, J., Andersen, M.: Adequacy of immersive virtual reality for the perception of daylit spaces: comparison of real and virtual environments. Leukos: J. Illum. Eng. Soc. 15(2–3), 203–226 (2019). https://doi.org/10.1080/15502724.2017.1404918

    Article  Google Scholar 

  13. Zhao, H., et al.: The interaction between map complexity and crowd movement on navigation decisions in virtual reality. R. Soc. Open Sci. 7(3), 191523 (2020). https://doi.org/10.1098/rsos.191523

    Article  Google Scholar 

  14. Grübel, J., Thrash, T., Hölscher, C., Schinazi, V.R.: Evaluation of a conceptual framework for predicting navigation performance in virtual reality. PLoS ONE 12(9), 1–22 (2017). https://doi.org/10.1371/journal.pone.0184682

    Article  Google Scholar 

  15. Moloney, J., Globa, A., Wang, R., Khoo, C.: Principles for the application of mixed reality as pre-occupancy evaluation tools (P-OET) at the early design stages. Archit. Sci. Rev. 1–10 (2019). https://doi.org/10.1080/00038628.2019.1675138

  16. Schrom-Feiertag, H., Stubenschrott, M., Regal, G., Matyus, T., Seer, S.: An interactive and responsive virtual reality environment for participatory urban planning. In: Chronis, A., et al. (eds.) Proceedings of the Symposium on Simulation for Architecture and Urban Design SimAUD, pp. 119–125 (2020). http://simaud.org/2020/preprints/67.pdf. Accessed 22 June 2020

  17. Kuliga, S.F., Thrash, T., Dalton, R.C., Hölscher, C.: Virtual reality as an empirical research tool—exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2015). https://doi.org/10.1016/j.compenvurbsys.2015.09.006

    Article  Google Scholar 

  18. Thrash, T., et al.: Evaluation of control interfaces for desktop virtual environments. Presence: Teleoperators Virtual Environ. 24(4), 322–334 (2015). https://doi.org/10.1162/PRES_a_00237

    Article  Google Scholar 

  19. de Klerk, R., Duarte, A.M., Medeiros, D.P., Duarte, J.P., Jorge, J., Lopes, D.S.: Usability studies on building early stage architectural models in virtual reality. Autom. Constr. 103, 104–116 (2019). https://doi.org/10.1016/j.autcon.2019.03.009

    Article  Google Scholar 

  20. Shen, W., Zhang, X., Shen, G.Q., Fernando, T.: The user pre-occupancy evaluation method in designer–client communication in early design stage: a case study. Autom. Constr. 32, 112–124 (2013). https://doi.org/10.1016/j.autcon.2013.01.014

    Article  Google Scholar 

  21. Heydarian, A., Pantazis, E., Wang, A., Gerber, D., Becerik-Gerber, B.: Towards user centered building design: identifying end-user lighting preferences via immersive virtual environments. Autom. Constr. 81, 56–66 (2017). https://doi.org/10.1016/j.autcon.2017.05.003

    Article  Google Scholar 

  22. Montello, D.R., Freundschuh, S.: Cognition of geographic information. In: McMaster, R.B., Usery, E.L. (eds.) A Research Agenda for Geographic Information Science, pp. 61–91. CRC Press, Boca Raton (2005). http://www.geog.ucsb.edu/~montello/pubs/ucgis.pdf. Accessed 22 June 2020

  23. Golledge, R.G.: Human wayfinding and cognitive maps. In: Golledge, R.G. (ed.) Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, pp. 5–45. JHU Press, Baltimore (1999). ISBN-13: 978-0801859939

    Google Scholar 

  24. Dalton, R.C., Kuliga, S.F., Hölscher, C.: POE 2.0: exploring the potential of social media for capturing unsolicited post-occupancy evaluations. Intell. Build. Int. 5(3), 162–180 (2013). https://doi.org/10.1080/17508975.2013.800813

    Article  Google Scholar 

  25. Dörner, R., Broll, W., Grimm, P., Jung, B. (eds.): Virtual und Augmented Reality (VR/AR). Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58861-1. ISBN-13: 978-3642289026

    Book  Google Scholar 

  26. Klatzky, R., Loomis, J., Beall, A., Chance, S., Golledge, R.: Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychol. Sci. 9(4), 293–298 (1998). https://doi.org/10.1111/1467-9280.00058

    Article  Google Scholar 

  27. Taube, J.S., Valerio, S., Yoder, R.M.: Is navigation in virtual reality with FMRI really navigation. J. Cogn. Neurosci. 25(7), 1008–1019 (2013). https://doi.org/10.1162/jocn_a_00386

    Article  Google Scholar 

  28. Diersch, N., Wolbers, T.: The potential of virtual reality for spatial navigation research across the adult lifespan. J. Exp. Biol. 222(Suppl 1), jeb187252 (2019). https://doi.org/10.1242/jeb.187252

    Article  Google Scholar 

  29. Slater, M., et al.: The ethics of realism in virtual and augmented reality. Front. Virtual Real. 1(1), 1–19 (2020). https://doi.org/10.3389/frvir.2020.00001

    Article  Google Scholar 

  30. Hölscher, C., Brösamle, M., Vrachliotis, G.: Challenges in multilevel wayfinding: a case study with the space syntax technique. Environ. Plan. B: Plan. Des. 39(1), 63–82 (2012). https://doi.org/10.1068/b34050t

    Article  Google Scholar 

  31. Brösamle, M., Mavridou, M., Hölscher, C.: What constitutes a main staircase? Evidence from wayfinding behaviour, architectural expertise and space syntax methods. In: Koch, D., Marcus, L., Steen, J. (eds.) Proceedings of the 7th International Space Syntax Symposium, Stockholm: KTH, vol. 011, pp. 1–12 (2009). https://pdfs.semanticscholar.org/1ed7/35cc356eed6b2f5ab647fb2f750c10804305.pdf. Accessed 22 June 2020

  32. Hölscher, C., Meilinger, T., Vrachliotis, G., Brösamle, M., Knauff, M.: Up the down staircase: wayfinding strategies in multi-level buildings. J. Environ. Psychol. 26(4), 284–299 (2006). https://doi.org/10.1016/j.jenvp.2006.09.002

    Article  Google Scholar 

  33. Brösamle, M., Hölscher, C., Vrachliotis, G.: Multi-level complexity in terms of space syntax. In: Kubat, A.S., Ertekin, O., Guney, Y.I., Eyuboglu, E. (eds.) Proceedings of the 6th International Space Syntax Symposium, pp. 044:1–044:12. Istanbul Technical University, Istanbul (2007). https://pdfs.semanticscholar.org/6e1b/f968b638051210cd134fcc83339f1e87baef.pdf. Accessed 22 June 2020

  34. Heinrich Luebke Haus, a building in Guenne, Lake Moehne, Germany. https://www.heinrich-luebke-haus.de/haus/. Accessed 22 June 2020

  35. Abdulmalik, A., et al.: DeCodingSpaces toolbox for grasshopper: computational analysis and generation of street network, plot, and buildings (2017). https://www.researchcollection.ethz.ch/handle/20.500.11850/216273. Accessed 22 June 2020

  36. Bielik, M., Schneider, S., König, R.: Parametric urban patterns: exploring and integrating graph-based spatial properties in parametric urban modelling. In: Henri, A., Jiri, P., Jaroslav, H., Dana, M. (eds.) Digital Physicality - Proceedings of the 30th eCAADe Conference, vol. 1, pp. 701–708. Faculty of Architecture, Technical University in Prague, Prague (2012). http://papers.cumincad.org/data/works/att/ecaade2012_057.content.pdf. Accessed 22 June 2020

  37. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2019). https://www.R-project.org/. Accessed 22 June 2020

  38. Wickham, H., et al.: Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686 (2019). https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  39. Bates, D., Maechle, M., Bolker, B., Walker, S.: Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015). https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  40. Ruddle, R., Payne, S.J., Jones, D.M.: Navigating buildings in “desk-top” virtual environments: experimental investigations using extended navigational experience. J. Exp. Psychol.: Appl. 3(2), 143–159 (1997). https://doi.org/10.1037/1076-898X.3.2.143

    Article  Google Scholar 

  41. Kuliga, S., et al.: From real to virtual and back: a multi-method approach for investigating the impact of urban morphology on human spatial experiences. In: Yamu, C., Poplin, A., Devisch, O. (eds.) The Virtual and the Real in Planning and Urban Design: Perspectives, Practices and Applications, pp. 151–169. Routledge, Taylor & Francis Group (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saskia Kuliga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuliga, S., Mavros, P., Brösamle, M., Hölscher, C. (2020). Comparing Human Wayfinding Behavior Between a Real, Existing Building, a Virtual Replica, and Two Architectural Redesigns. In: Šķilters, J., Newcombe, N., Uttal, D. (eds) Spatial Cognition XII. Spatial Cognition 2020. Lecture Notes in Computer Science(), vol 12162. Springer, Cham. https://doi.org/10.1007/978-3-030-57983-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57983-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57982-1

  • Online ISBN: 978-3-030-57983-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics