Skip to main content

Line-Up Elections: Parallel Voting with Shared Candidate Pool

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12283)


We introduce the model of line-up elections which captures parallel or sequential single-winner elections with a shared candidate pool. The goal of a line-up election is to find a high-quality assignment of a set of candidates to a set of positions such that each position is filled by exactly one candidate and each candidate fills at most one position. A score for each candidate-position pair is given as part of the input, which expresses the qualification of the candidate to fill the position. We propose several voting rules for line-up elections and analyze them from an axiomatic and an empirical perspective using real-world data from the popular video game FIFA.


  • Single-winner voting
  • Multi-winner voting
  • Assignment problem
  • Axiomatic analysis
  • Empirical analysis

N. Boehmer—Supported by the DFG project MaMu (NI 369/19).

P. Faliszewski—Supported by a Friedrich Wilhelm Bessel Award from the Alexander von Humboldt Foundation.

A. Kaczmarczyk—Supported by the DFG project AFFA (BR 5207/1 and NI 369/15).

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

    This story and the opinions of the coaches are fictional. However, Löw really faced the described problem before the World Cup 2014.

  2. 2.

    The Gini coefficient is a metric to measure the dispersion of a probability distribution; it is zero for uniform distributions and one for distributions with a unit step cumulative distribution function.


  1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

    CrossRef  MathSciNet  Google Scholar 

  2. Arrow, K.J., Sen, A., Suzumura, K. (eds.): Handbook of Social Choice and Welfare, vol. 2. Elsevier, Amsterdam (2010)

    Google Scholar 

  3. Avis, D.: A survey of heuristics for the weighted matching problem. Networks 13(4), 475–493 (1983)

    CrossRef  MathSciNet  Google Scholar 

  4. Aziz, H., Brill, M., Conitzer, V., Elkind, E., Freeman, R., Walsh, T.: Justified representation in approval-based committee voting. Soc. Choice Welf. 48(2), 461–485 (2017)

    CrossRef  MathSciNet  Google Scholar 

  5. Aziz, H., Lee, B.E.: Sub-committee approval voting and generalized justified representation axioms. In: AIES 2018, pp. 3–9 (2018)

    Google Scholar 

  6. Barberà, S., Coelho, D.: How to choose a non-controversial list with \(k\) names. Soc. Choice Welf. 31(1), 79–96 (2008)

    CrossRef  MathSciNet  Google Scholar 

  7. Boehmer, N., Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R.: Line-up elections: parallel voting with shared candidate pool. arXiv preprint arXiv:2007.04960 [cs.GT] (2020)

  8. Brams, S.J., Fishburn, P.C.: Voting procedures. In: Handbook of Social Choice and Welfare, chap. 4, pp. 173–236 (2002)

    Google Scholar 

  9. EA Sports: FIFA 19. [CD-ROM] (2018)

    Google Scholar 

  10. Elkind, E., Faliszewski, P., Skowron, P., Slinko, A.: Properties of multiwinner voting rules. Soc. Choice Welf. 48(3), 599–632 (2017)

    CrossRef  MathSciNet  Google Scholar 

  11. Elkind, E., Ismaili, A.: OWA-based extensions of the Chamberlin-Courant rule. In: ADT 2015, pp. 486–502 (2015)

    Google Scholar 

  12. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Multiwinner voting: a new challenge for social choice theory. In: Trends in Computational Social Choice, pp. 27–47 (2017)

    Google Scholar 

  13. Fishburn, P.C.: Monotonicity paradoxes in the theory of elections. Discrete Appl. Math. 4(2), 119–134 (1982)

    CrossRef  MathSciNet  Google Scholar 

  14. Gadiya, K.: FIFA 19 complete player dataset (2019).

  15. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    CrossRef  MathSciNet  Google Scholar 

  16. Garfinkel, R.S.: Technical note - an improved algorithm for the bottleneck assignment problem. Oper. Res. 19(7), 1747–1751 (1971)

    CrossRef  Google Scholar 

  17. Garg, N., Kavitha, T., Kumar, A., Mehlhorn, K., Mestre, J.: Assigning papers to referees. Algorithmica 58(1), 119–136 (2010)

    CrossRef  MathSciNet  Google Scholar 

  18. Golden, B., Perny, P.: Infinite order Lorenz dominance for fair multiagent optimization. In: AAMAS 2010, pp. 383–390 (2010)

    Google Scholar 

  19. Goldsmith, J., Sloan, R.: The AI conference paper assignment problem. In: MPREF 2007 (2007)

    Google Scholar 

  20. Kuhn, H.W.: The Hungarian method for the assignment problem. In: 50 Years of Integer Programming, pp. 29–47 (2010)

    Google Scholar 

  21. Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57(3), 304–324 (2009)

    CrossRef  MathSciNet  Google Scholar 

  22. Lesca, J., Minoux, M., Perny, P.: The fair OWA one-to-one assignment problem: NP-hardness and polynomial time special cases. Algorithmica 81(1), 98–123 (2019)

    CrossRef  MathSciNet  Google Scholar 

  23. Lian, J.W., Mattei, N., Noble, R., Walsh, T.: The conference paper assignment problem: using order weighted averages to assign indivisible goods. In: AAAI 2018, pp. 1138–1145 (2018)

    Google Scholar 

  24. Murphy, R.: FIFA player ratings explained (2018). Accessed 08 July 2020

  25. Skowron, P., Faliszewski, P., Lang, J.: Finding a collective set of items: from proportional multirepresentation to group recommendation. Artif. Intell. 241, 191–216 (2016)

    CrossRef  MathSciNet  Google Scholar 

  26. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. Syst. 18(1), 183–190 (1988)

    CrossRef  MathSciNet  Google Scholar 

  27. Young, H.: An axiomatization of Borda’s rule. J. Econ. Theory 9(1), 43–52 (1974)

    CrossRef  MathSciNet  Google Scholar 

  28. Zwicker, W.S.: Introduction to the theory of voting. In: Handbook of Computational Social Choice, pp. 23–56 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Niclas Boehmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boehmer, N., Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R. (2020). Line-Up Elections: Parallel Voting with Shared Candidate Pool. In: Harks, T., Klimm, M. (eds) Algorithmic Game Theory. SAGT 2020. Lecture Notes in Computer Science(), vol 12283. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57979-1

  • Online ISBN: 978-3-030-57980-7

  • eBook Packages: Computer ScienceComputer Science (R0)