Skip to main content

Synthesis of Robust Virtual Inertia Control

  • Chapter
  • First Online:
Virtual Inertia Synthesis and Control

Abstract

Regarding the previously elaborated inertia control techniques, they are not explicitly designed to deal with the effect of high uncertainty and disturbance. Thus, it is difficult to achieve a suitable trade-off between robust and nominal performances. In adaptive control techniques, the uncertainty formulation may not be appropriately included in the control design process. As a result, it is difficult to ensure the simultaneous robust performance and stability of the virtual inertia control in the presence of bounded modeling errors. Due to the capability of uncertainty formulation in its control synthesis, the robust control technique successfully resolves the concerned problem. Compared with the adaptive control theory, the robust control theory is static rather than adapting to measurements of variations. Subsequently, the robust controller is specially designed to operate assuming that certain varibles will be unknown but bounded. This chapter presents the application of robust uncertainty modeling theory for designing the H∞ robust virtual inertia control system in the presence of high renewable energy sources (RESs)/distributed generators (DGs) penetration. Practical constraints and system uncertainties are appropriately considered during the robust synthesis process. The H∞ robust control is used via a developed linear matrix inequalities (LMI) algorithm to reach an optimal solution between nominal and robust performances for design objectives. The robustness and performance of the H∞-based virtual inertia controller are executed along with different sets of severe parametric uncertainty and external disturbance. The closed-loop system is verified through a nonlinear control system under the critical operating scenarios of uncertain control parameters with high RESs/DGs penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Wang, F. Blaabjerg, Harmonic stability in power electronic-based power systems: concept, modeling, and analysis. IEEE Trans. Smart Grid 10(3), 2858–2870 (2019)

    Article  Google Scholar 

  2. A. Anvari-Moghaddam, A. Rahimi-Kian, M.S. Mirian, J.M. Guerrero, A multi-agent based energy management solution for integrated buildings and microgrid system. Appl. Energy 203(1), 41–56 (2017)

    Article  Google Scholar 

  3. H. Bevrani, Robust Power System Frequency Control, 2nd ed. (Springer, New York, USA, 2014)

    Google Scholar 

  4. H. Hui, Y. Ding, K. Luan, and D. Xu, Analysis of ‘8•15’ blackout in Taiwan and the improvement method of contingency reserve capacity through direct load control, in Proc. IEEE PES General Meeting (IEEE PES GM), 1–6 (2018)

    Google Scholar 

  5. CBS NEWS, Power fully restored after widespread Los Angeles outage, CBS Interactive Inc., 09-Jul-2017

    Google Scholar 

  6. Y. Liu, Analysis of brazilian blackout on March 21st, 2018 and revelations to security for human grid, in Proc. International Conference on Intelligent Green Building and Smart Grid, 422–426 (2019)

    Google Scholar 

  7. AP News, Azerbaijan hit by massive blackout, worst in decades, The Associated Press, 04-Jul-2018

    Google Scholar 

  8. K. Asano, T. Iwata, Source rupture process of the 2018 Hokkaido Eastern Iburi earthquake deduced from strong-motion data considering seismic wave propagation in three-dimensional velocity structure. Earth Planets Sp. 71(1), 1–17 (2019)

    Article  Google Scholar 

  9. BBC News, Venezuela blackout: Power cuts plunge country into darkness, BBC News, 23-Jul-2019

    Google Scholar 

  10. CNN, Massive failure’ leaves Argentina, Paraguay and Uruguay with no power, Cable News Network, 16-Jul-2019

    Google Scholar 

  11. BBC News, Indonesia blackout: Huge outage hits Jakarta and surrounding area, BBC News, 05-Aug-2019

    Google Scholar 

  12. BBC News, UK power cut: National Grid promises to learn lessons from blackout, BBC News, 10-Aug-2019

    Google Scholar 

  13. J.O. Petinrin, M. Shaabanb, Impact of renewable generation on voltage control in distribution systems. Renew. Sustain. Energy Rev. 65(1), 770–783 (2016)

    Article  Google Scholar 

  14. A.J. Veldhuis, M. Leach, A. Yang, The impact of increased decentralised generation on the reliability of an existing electricity network. Appl. Energy 215(1), 479–502 (2018)

    Article  Google Scholar 

  15. G. Andersson et al., Causes of the 2003 major grid blackouts in North America Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)

    Article  Google Scholar 

  16. Y.V. Makarov, V.I. Reshetov, V.A. Stroev, N.I. Voropai, Blackout prevention in the United States, Europe, and Russia, Proc. of IEEE, 93(11), 1942–1955 (2005)

    Google Scholar 

  17. UCTE, “Final report of the investigation commitee on the 28 september 2003 blackout in Italy,” 2004

    Google Scholar 

  18. I. Green, CAISO experience with impact of high penetration of renewable resources on short-term voltage stability, in Proc. IEEE PES General Meeting (IEEE PES GM),1–6 (2015)

    Google Scholar 

  19. W. Zappa, M. Junginger, M. van den Broek, Is a 100% renewable European power system feasible by 2050? Appl. Energy 233–234(1), 1027–1050 (2019)

    Article  Google Scholar 

  20. K. Hansen, B.V. Mathiesen, I.R. Skov, Full energy system transition towards 100% renewable energy in Germany in 2050. Renew. Sustain. Energy Rev. 102(1), 1–13 (2019)

    Article  Google Scholar 

  21. B.S. Howard, N.E. Hamilton, M. Diesendorf, T. Wiedmann, Modeling the carbon budget of the Australian electricity sector’s transition to renewable energy. Renew. Energy 125(1), 712–728 (2018)

    Article  Google Scholar 

  22. X.J. Yang, H. Hu, T. Tan, J. Li, China’s renewable energy goals by 2050. Environ. Dev. 20(1), 86–90 (2016)

    Google Scholar 

  23. M.A. Delucchi, M.Z. Jacobson, Providing all global energy with wind, water, and solar power, Part II: reliability, system and transmission costs, and policies. Energy Policy 39(3), 1170–1190 (2011)

    Article  Google Scholar 

  24. M.Z. Jacobson, M.A. Delucchi, Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3), 1154–1169 (2011)

    Article  Google Scholar 

  25. A. Fathi, Q. Shafiee, H. Bevrani, Robust frequency control of microgrids using an extended virtual synchronous generator. IEEE Trans. Power Syst. 33(6), 6289–6297 (2018)

    Article  Google Scholar 

  26. H. Bevrani, T. Hiyama, Robust decentralised PI based LFC design for time delay power systems. Energy Convers. Manag. 49(2), 193–204 (2008)

    Article  Google Scholar 

  27. H. Bevrani, T. Hiyama, On load-frequency regulation with time delays: design and real-time implementation. IEEE Trans. Energy Convers. 24(1), 292–300 (2009)

    Article  Google Scholar 

  28. H. Bevrani, K. Tsuji, Y. Mitani, On robust load-frequency regulation in a restructured power system. IEEJ Trans. Power Energy 124(2), 190–198 (2004)

    Article  Google Scholar 

  29. A. Haddadi, B. Boulet, A. Yazdani, G. Joos, A μ-based approach to small-signal stability analysis of an interconnected distributed energy resource unit and load. IEEE Trans. Power Deliv. 30(4), 1715–1726 (2015)

    Article  Google Scholar 

  30. N. Sa-ngawong, I. Ngamroo, Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control. Renew. Energy 74, 555–567 (2015)

    Article  Google Scholar 

  31. Y. Han, P.M. Young, A. Jain, D. Zimmerle, Robust control for microgrid frequency deviation reduction with attached storage system. IEEE Trans. Smart Grid 6(2), 557–565 (2015)

    Article  Google Scholar 

  32. M.J. Hossain, H.R. Pota, M.A. Mahmud, M. Aldeen, Robust control for power sharing in microgrids with low-inertia wind and PV generators. IEEE Trans. Sustain. Energy 6(3), 1067–1077 (2015)

    Article  Google Scholar 

  33. M. Babazadeh, H. Karimi, A robust two-degree-of-freedom control strategy for an islanded microgrid. IEEE Trans. Power Deliv. 28(3), 1339–1347 (2013)

    Article  Google Scholar 

  34. D.J. Lee, L. Wang, Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: time-domain simulations. IEEE Trans. Energy Convers. 23(1), 311–320 (2008)

    Article  Google Scholar 

  35. H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralized AGC in a restructured power system. Energy Convers. Manag. 45(15–16), 2297–2312 (2004)

    Article  Google Scholar 

  36. D. Rerkpreedapong, A. Hasanovic, A. Feliachi, Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 18(2), 855–861 (2003)

    Article  Google Scholar 

  37. T. Kerdphol, F.S. Rahman, M. Watanabe, Y. Mitani, Robust virtual inertia control of a low inertia microgrid considering frequency measurement effects. IEEE Access 7(1), 57550–57560 (2019)

    Article  Google Scholar 

  38. N. Tephiruk, K. Hongesombut, and T. Kerdphol, Robust control of combined optimized resistive FCL and ECS for power system transient stability improvement, in Proc. International Electrical Engineering Congress (iEECON 2014), 1–4 (2014)

    Google Scholar 

  39. T. Kerdphol, F.S. Rahman, Y. Mitani, M. Watanabe, S. Kufeoglu, Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy. IEEE Access 6(1), 625–636 (2017)

    Google Scholar 

  40. R. Jiang, J. Wang, Y. Guan, Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 27(2), 800–810 (2012)

    Article  Google Scholar 

  41. R.A. Jabr, S. Karaki, J.A. Korbane, Robust Multi-Period OPF with storage and renewables. IEEE Trans. Power Syst. 30(5), 2790–2799 (2015)

    Article  Google Scholar 

  42. P. Gahinet, P. Apkarian, A linear matrix inequality approach to H∞ control. Int. J. Robust Nonlinear Control 4(1), 421–448 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Packard, J. Doyle, The complex structured singular value. Automatica 29(1), 71–109 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Vachirasricirikul, I. Ngamroo, Robust controller design of heat pump and plug-in hybrid electric vehicle for frequency control in a smart microgrid based on specified-structure mixed H2/H∞ control technique. Appl. Energy 88(11), 3860–3868 (2011)

    Article  Google Scholar 

  45. X. Li, Y. J. Song, S. Bin Han, Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 18(1), 468–475 (2008)

    Google Scholar 

  46. D.W. Gu, P.H. Petkov, M.M. Konstantinov, Robust control design with MATLAB® (Springer-Verlag, London, UK, 2013)

    Google Scholar 

  47. P. Apkarian, D. Noll, H.D. Tuan, Fixed-order H∞ control design via a partially augmented Lagrangian method. Int. J. Robust Nonlinear Control 13(12), 1137–1148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. M.P.S. Gryning, Q. Wu, M. Blanke, H.H. Niemann, K.P.H. Andersen, Wind turbine inverter robust loop-shaping control subject to grid interaction effects. IEEE Trans. Sustain. Energy 7(1), 41–50 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerdphol, T., Rahman, F., Watanabe, M., Mitani, Y. (2021). Synthesis of Robust Virtual Inertia Control. In: Virtual Inertia Synthesis and Control. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-57961-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57961-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57960-9

  • Online ISBN: 978-3-030-57961-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics