Skip to main content

Fuzzy Logic Control for Virtual Inertia Synthesis

  • Chapter
  • First Online:
Virtual Inertia Synthesis and Control

Abstract

Currently, renewable energy sources (RESs) and distributed generators (DGs) are highly integrated into power systems regarding energy crisis, environmental concerns, and economic growth. The RESs/DGs penetration brings more complexity to the power system, since its systems are decentralized, and power outputs are intermittent or unpredictable against time-varying. Nevertheless, the RESs/DGs may not participate in stability regulation (e.g., frequency/voltage control), which causes the lack of inertia and damping property to the system, resulting in the weakening of grid stability. This situation can lead to system instability, cascading failures, and power blackouts. To deal with this problem, the system requires high-level (advanced) inertia controllers in tracking various levels of RESs/DGs penetration. Fuzzy logic control can be considered as one of the solution techniques due to the high reliability in nonlinear modeling with the fast processing time. In this chapter, a fuzzy logic technique is integrated into a virtual inertia control loop to enable the self-adaptive ability of  virtual inertia constant against the different levels of RESs/DGs penetration regarding frequency control. As a result, the virtual inertia control unit can automatically adjust itself in emulating different amounts of inertia and damping responding the integrated levels of RESs/DGs at the specific time.  At the beginning, the fundamental of fuzzy logic is discussed, and the recent achievements in fuzzy applications for frequency control problems are briefly reviewed. Then, a decentralized fuzzy controller in scheduling virtual inertia control constant is designed. Lastly, the effectiveness of the proposed control scheme is demonstrated through a nonlinear simulation under wide ranges of critical RESs/DGs penetration regarding system inertia and damping variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems (Prentice-Hall, NJ, USA, 1996)

    Google Scholar 

  2. M. Sugeno, An introductory survey of fuzzy control. Inf. Sci. (Ny) 1(36), 59–83 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(1), 1585–1588 (1974)

    Article  Google Scholar 

  4. L.P. Holmblad, J.J. Ostergaard, Control of a cement Kiln by fuzzy logic. Fuzzy Inf Decis Process. 1(1), 389–399 (1982)

    Google Scholar 

  5. H. Oshima, S. Yasunobu, S. Ichi Sekino, Automatic train operation system based on predictive fuzzy control, in Proc. International Workshop on Artificial Intelligence for Industrial Applications, 485–489 (1988)

    Google Scholar 

  6. J. Yen, R. Langari, L.A. Zadeh, Industrial Applications of Fuzzy Logic and Intelligent System (IEEE Press, NJ, USA, 1995)

    MATH  Google Scholar 

  7. J. Yen, R. Langari, Fuzzy Logic: Intelligence, Control and Information (Prentice-Hall, NJ, USA)

    Google Scholar 

  8. M. Mouzé-Amady, E. Raufaste, H. Prade, J.P. Meyer, Fuzzy-TLX: Using fuzzy integrals for evaluating human mental workload with NASA-Task Load indeX in laboratory and field studies. Ergonomics 56(5), 752–763 (2013)

    Article  Google Scholar 

  9. L.L.L. McLauchlan, Fuzzy logic controlled landing of a Boeing 747, in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), 5369–5375 (2009)

    Google Scholar 

  10. J.M. Mendel, H. Hagras, W.W. Tan, W.W. Melek, H. Ying, Introduction To Type-2 Fuzzy Logic Control: Theory and Applications (IEEE-Wiley, NJ, USA, 2014)

    Google Scholar 

  11. J.M. Mendel, Electric Uncertain Rule-Based Fuzzy Systems (Springer, Switzerland, 2018)

    Google Scholar 

  12. D.K. Chaturvedi, O.P. Malik, Neurofuzzy power system stabilizer. IEEE Trans. Energy Convers. 23(3), 887–894 (2008)

    Article  Google Scholar 

  13. P. Hoang, K. Tomsovic, Design and analysis of an adaptive fuzzy power system stabilizer. IEEE Trans. Energy Convers. 11(2), 455–461 (1996)

    Article  Google Scholar 

  14. I.H. Altas, J. Neyens, A fuzzy logic decision maker and controller for reducing load frequency oscillations in multi-area power systems, in Proc. IEEE PES General Meeting (IEEE PES GM), 1–6 (2006)

    Google Scholar 

  15. T. Chaiyatham, I. Ngamroo, Improvement of power system transient stability by PV farm with fuzzy gain scheduling of PID controller. IEEE Syst. J. 11(3), 1684–1691 (2017)

    Article  Google Scholar 

  16. K.A. Varma, D.K. Mohanta, M.J.B. Reddy, Applications of type-2 fuzzy logic in power systems: a literature survey, in Proc. International Conference on Environment and Electrical Engineering (EEEIC 2013), 1–6 (2013)

    Google Scholar 

  17. Y.A. Baysal, I.H. Altas, A fuzzy reasoning approach for optimal location and sizing of shunt capacitors in radial power systems, in Proc. IEEE Energy Conversion Congress and Exposition, 1–6 (2015)

    Google Scholar 

  18. M. Cortés-Carmona, R. Palma-Behnke, G. Jiménez-Estévez, Fuzzy arithmetic for the DC load flow. IEEE Trans. Power Syst. 25(1), 206–214 (2010)

    Article  Google Scholar 

  19. S. Kumar, D.K. Chaturvedi, Optimal power flow solution using fuzzy evolutionary and swarm optimization. Int. J. Electr. Power Energy Syst. 47(1), 416–423 (2013)

    Article  Google Scholar 

  20. A. Gupta, D.K. Jain, S. Dahiya, Management of power exchange between hybrid microgrids using intelligent control, in Proc. IEEE International Conference on Power Systems (ICPS 2016), 1–6 (2016)

    Google Scholar 

  21. W.R. Anis Ibrahim, M.M. Morcos, Artificial intelligence and advanced mathematical tools for power quality applications: a survey. IEEE Trans. Power Deliv. 17(2), 668–673 (2002)

    Google Scholar 

  22. L. Suganthi, S. Iniyan, A.A. Samuel, Applications of fuzzy logic in renewable energy systems—a review. Renew. Sustain. Energy Rev. 48(1), 585–607 (2015)

    Article  Google Scholar 

  23. M.E. El-Hawary, Electric Power Applications of Fuzzy Systems (IEEE Press, NJ, USA, 2010)

    Google Scholar 

  24. I.H. Altas, Fuzzy Logic Control in Energy Systems with Design Applications in MatLab/Simulink (The Institution of Engineering and Technology, UK, 2017)

    Google Scholar 

  25. K. Hongesombut, T. Kerdphol, Robust interline power flow controller with wind power source using phase-plane fuzzy logic control. Trans. Electr. Eng. Electron. Commun. 11(2) (2013)

    Google Scholar 

  26. N. Tephiruk, W. Kanokbannakorn, T. Kerdphol, Y. Mitani, K. Hongesombut, Fuzzy logic control of a battery energy storage system for stability improvement in an islanded microgrid. Sustain. 10(5), 1–16 (2018)

    Google Scholar 

  27. C.S. Rao, S.S. Nagaraju, P.S. Raju, Automatic generation control of TCPS based hydrothermal system under open market scenario: a fuzzy logic approach. Int. J. Electr. Power Energy Syst. 18(3), 266–280 (2009)

    Google Scholar 

  28. A.P. Fathima, M.A. Khan, Design of a new market structure and robust controller for the frequency regulation service in the deregulated power system. Electr. Power Components Syst. 36(1), 864–883 (2008)

    Article  Google Scholar 

  29. P. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa, A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties. IEEE Trans. Power Syst. 19(3), 1299–1307 (2004)

    Article  Google Scholar 

  30. C.F. Juang, C.F. Lu, Load-frequency control by hybrid evolutionary fuzzy PI controller. IEE Proc. Gener. Transm. Distrib. 153(2), 196–204 (2006)

    Article  Google Scholar 

  31. G.A. Chown, R.C. Hartman, Design and experience with a fuzzy logic controller for automatic generation control (AGC). IEEE Power Eng. Rev. 13(3), 965–970 (1997)

    Google Scholar 

  32. A. Feliachi, D. Rerkpreedapong, NERC compliant load frequency control design using fuzzy rules. Electr. Power Syst. Res. 73(2), 101–106 (2005)

    Article  Google Scholar 

  33. A. Demiroren, E. Yesil, Automatic generation control with fuzzy logic controllers in the power system including SMES units. Int. J. Electr. Power Energy Syst. 26(1), 291–305 (2004)

    Article  Google Scholar 

  34. M.K. El-Sherbiny, G. El-Saady, A.M. Yousef, Efficient fuzzy logic load-frequency controller. Energy Convers. Manag. 43(1), 1853–1863 (2002)

    Article  Google Scholar 

  35. E. Yeşil, M. Güzelkaya, I. Eksin, Self tuning fuzzy PID type load and frequency controller. Energy Convers. Manag. 45(1), 377–390 (2004)

    Article  Google Scholar 

  36. E. Çam, I. Kocaarslan, A fuzzy gain scheduling PI controller application for an interconnected electrical power system. Electr. Power Syst. Res. 73(3), 329–340 (2005)

    Article  Google Scholar 

  37. Y.L. Karnavas, D.P. Papadopoulos, AGC for autonomous power system using combined intelligent techniques. Electr. Power Syst. Res. 62(1), 225–239 (2002)

    Article  Google Scholar 

  38. P. Subbaraj, K. Manickavasagam, Automatic generation control of multi-area power system using fuzzy logic controller. Eur. Trans. Electr. Power 18(3), 266–280 (2008)

    Article  Google Scholar 

  39. M.H. Ali, T. Murata, J. Tamura, Transient stability enhancement by fuzzy logic-controlled SMES considering coordination with optimal reclosing of circuit breakers. IEEE Trans. Power Syst. 23(2), 631–640 (2008)

    Article  Google Scholar 

  40. Q. Yaser, T. Kerdphol, Y. Mitani, Different optimization schemes for community based energy storage systems, in Proc. International Conference on Electric Power and Energy Conversion Systems, 1–5 (2015)

    Google Scholar 

  41. N.J. Schouten, M.A. Salman, N.A. Kheir, Fuzzy logic control for parallel hybrid vehicles. IEEE Trans. Control Syst. Technol. 10(3), 460–468 (2002)

    Article  Google Scholar 

  42. P.D. Brown, J.A. Peças Lopes, M.A. Matos, Optimization of pumped storage capacity in an isolated power system with large renewable penetration. IEEE Trans. Power Syst. 23(2), 523–531 (2008)

    Google Scholar 

  43. A. A. Ferreira, J. A. Pomilio, G. Spiazzi, L. de Araujo Silva, Energy management fuzzy logic supervisory for electric vehicle power supplies system. IEEE Trans. Power Electron. 23(1), 107–115 (2008)

    Google Scholar 

  44. N. Sa-ngawong, I. Ngamroo, Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control. Renew. Energy 74, 555–567 (2015)

    Article  Google Scholar 

  45. R.H. Liang, J.H. Liao, A fuzzy-optimization approach for generation scheduling with wind and solar energy systems. IEEE Trans. Power Syst. 22(4), 1665–1674 (2007)

    Article  Google Scholar 

  46. I.G. Damousis, M.C. Alexiadis, J.B. Theocharis, P.S. Dokopoulos, A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energy Convers. 19(2), 352–361 (2004)

    Article  Google Scholar 

  47. Y.T. Chen, Y.C. Jhang, R.H. Liang, A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems. Sol. Energy 126(1), 53–63 (2016)

    Article  Google Scholar 

  48. T.L. Kottas, Y.S. Boutalis, A.D. Karlis, New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks. IEEE Trans. Energy Convers. 21(3), 793–803 (2006)

    Article  Google Scholar 

  49. Y. Hirase, K. Abe, K. Sugimoto, Y. Shindo, A grid-connected inverter with virtual synchronous generator model of algebraic type. Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi) 132-B(4), 10–21 (2013)

    Google Scholar 

  50. S. D’Arco, J.A. Suul, O.B. Fosso, A virtual synchronous machine implementation for distributed control of power converters in SmartGrids. Electr. Power Syst. Res. 122(1), 180–197 (2015)

    Article  Google Scholar 

  51. T. Shintai, Y. Miura, T. Ise, Oscillation damping of a distributed generator using a virtual synchronous generator. IEEE Trans. Power Deliv. 29(2), 668–676 (2014)

    Article  Google Scholar 

  52. L. Sigrist, I. Egido, E. Lobato Miguelez, L. Rouco, Sizing and controller setting of ultracapacitors for frequency stability enhancement of small isolated power systems. IEEE Trans. Power Syst. 30(4), 2130–2138 (2015)

    Google Scholar 

  53. N. Soni, S. Doolla, M.C. Chandorkar, Improvement of transient response in microgrids using virtual inertia. IEEE Trans. Power Deliv. 28(3), 1830–1838 (2013)

    Article  Google Scholar 

  54. T. Kerdphol, F.S. Rahman, Y. Mitani, Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies 11(4), 981–997 (2018)

    Article  Google Scholar 

  55. E. Rakhshani, D. Remon, A.M. Cantarellas, J.M. Garcia, P. Rodriguez, Virtual synchronous power strategy for multiple HVDC interconnections of multi-area AGC power systems. IEEE Trans. Power Syst. 32(3), 1665–1677 (2017)

    Article  Google Scholar 

  56. E. Rakhshani, P. Rodriguez, Inertia emulation in AC/DC interconnected power systems using derivative technique considering frequency measurement effects. IEEE Trans Power Syst 32(5), 3338–3351 (2017)

    Article  Google Scholar 

  57. P. Rodriguez, E. Rakhshani, A. Mir Cantarellas, D. Remon, Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems. IET Gener. Transm. Distrib. 10(6), 1458–1469 (2016)

    Google Scholar 

  58. T. Kerdphol, M. Watanabe, K. Hongesombut, Y. Mitani, Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration. IEEE Access 7(1), 76071–76083 (2019)

    Article  Google Scholar 

  59. J. Alipoor, Y. Miura, T. Ise, Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 451–458 (2015)

    Google Scholar 

  60. D. Li, Q. Zhu, S. Lin, X.Y. Bian, A self-adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Trans. Energy Convers. 32(1), 397–398 (2017)

    Article  Google Scholar 

  61. M. A. Torres L., L.A.C. Lopes, L.A. Moran T., J.R. Espinoza C, Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 29(4), 833–840 (2014)

    Google Scholar 

  62. J. Harris, Fuzzy Logic Application in Engineering Science (Springer, Netherlands, 2006)

    Google Scholar 

  63. J. Espinosa, J. Vandewalle, V. Wertz, Fuzzy Logic, Identification and Predictive Control (Springer, London. UK., 2005)

    Book  MATH  Google Scholar 

  64. A. Gunasekaran, Agile Manufacturing: The 21st Century Competitive Strategy (Elsevier, UK, 2001)

    Google Scholar 

  65. A. Soteris, Kalogirou, Solar Energy Engineering (Acedemic Press-Elsevier, USA., 2013)

    Google Scholar 

  66. H.D. Jude, D. Gupta, V.E. Balas, Intelligent Data Analysis for Biomedical Applications. (Acedemic Press-Elsevier, USA, 2019)

    Google Scholar 

  67. C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2012)

    Article  Google Scholar 

  68. L. Wang, Model Predictive Control System Design and Implementation Using MATLAB® (Springer-Verlag, London, UK, 2009)

    Google Scholar 

  69. AEMC Reliability Panel, Stage One Final Determination: Review of the Frequency Operating Standard, Final Report, Australia, Sydney (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerdphol, T., Rahman, F., Watanabe, M., Mitani, Y. (2021). Fuzzy Logic Control for Virtual Inertia Synthesis. In: Virtual Inertia Synthesis and Control. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-57961-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57961-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57960-9

  • Online ISBN: 978-3-030-57961-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics