Skip to main content

Application of PI/PID Control for Virtual Inertia Synthesis

  • Chapter
  • First Online:
Virtual Inertia Synthesis and Control

Abstract

In the previous chapters, to deal with the disturbances including high integration of distributed generators (DGs)/renewable energy sources (RESs), the virtual inertia constant, which is the crucial factor in emulating additional inertia power into the system, is fixed at one value. In the application of virtual inertia control, improper selection of its control value may result in a higher frequency deviation, slower recovery time, and instability. To overcome this problem, in this chapter, the basic proportional-integral (PI) or proportional-integral-derivative (PID) controllers, which are widely used in the real-practice in the industrial systems, are applied to the virtual inertia control to generate proper virtual inertia constant for imitating the effective inertia power and improving system frequency stability. This chapter provides the synthesis of a new decentralized PI/PID-based virtual inertia control to evaluate the virtual inertia power under different levels of RESs/DGs penetration and load disturbances. The uses of the PI/PID controllers for frequency stability enhancement are briefly discussed. Then, the optimal setting of PI/PID parameters using the classical and modern tuning techniques are described in detail to obtain the sufficient virtual inertia constant with respect to the additional power, assuring stable grid operation. Finally, the proposed method is tested in a control area power system with different levels of RESs/DGs, loads, and system inertia and damping reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Visioli, Practical PID Control (Springer, London, UK, 2006)

    MATH  Google Scholar 

  2. Q.G. Wang, T.H. Lee, H.W. Fung, Q. Bi, Y. Zhang, PID tuning for improved performance. IEEE Trans. Control Syst. Technol. 7(4), 457–465 (1999)

    Article  Google Scholar 

  3. K.H. Ang, G. Chong, Y. Li, PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  4. M.J. Neath, A.K. Swain, U.K. Madawala, D.J. Thrimawithana, An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Trans. Power Electron. 29(3), 1523–1531 (2014)

    Article  Google Scholar 

  5. Y. Cheng-Ching, Autotuning of PID Controllers (Springer, London, UK, 2006)

    Google Scholar 

  6. J. Oravec, M. Bakošová, M. Trafczynski, A. Vasičkaninová, A. Mészáros, M. Markowski, Robust model predictive control and PID control of shell-and-tube heat exchangers. Energy 159(15), 1–10 (2018)

    Article  Google Scholar 

  7. I.D. Diaz-Rodriguez, S. Han, S.P. Bhattacharyya, Analytical Design of PID Controllers (Springer, Switzerland, 2019)

    Book  Google Scholar 

  8. D. Rerkpreedapong, A. Hasanovic, A. Feliachi, Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 18(2), 855–861 (2003)

    Google Scholar 

  9. H. Bevrani, T. Hiyama, Robust decentralised PI based LFC design for time delay power systems. Energy Convers. Manag. 49(2), 193–204 (2008)

    Article  Google Scholar 

  10. J. Bai, X. Zhang, A new adaptive PI controller and its application in HVAC systems. Energy Convers. Manag. 48(4), 1043–1054 (2007)

    Article  Google Scholar 

  11. M. Andreasson, D.V. Dimarogonas, H. Sandberg, K.H. Johansson, Distributed PI-control with applications to power systems frequency control, in Proc. American Control Conference, 3183–3188 (2014)

    Google Scholar 

  12. C.S. Ali Nandar, Robust PI control of smart controllable load for frequency stabilization of microgrid power system. Renew. Energy 56(1), 16–23 (2013)

    Google Scholar 

  13. H. Bevrani, Y. Mitani, K. Tsuji, Sequential design of decentralized load frequency controllers using μ synthesis and analysis. Energy Convers. Manag. 45(6), 865–881 (2004)

    Article  Google Scholar 

  14. H. Bevrani, T. Hiyama, H. Bevrani, Robust PID based power system stabiliser: design and real-time implementation. Int. J. Electr. Power Energy Syst. 33(2), 179–188 (2011)

    Article  Google Scholar 

  15. G. Magdy, E.A. Mohamed, G. Shabib, A.A. Elbaset, Y. Mitani, SMES based a new PID controller for frequency stability of a real hybrid power system considering high wind power penetration. IET Renew. Power Gener. 11(12), 1304–1313 (2018)

    Article  Google Scholar 

  16. P.K. Mohanty, B.K. Sahu, T.K. Pati, S. Panda, S.K. Kar, Design and analysis of fuzzy PID controller with derivative filter for AGC in multi-area interconnected power system. IET Gener. Transm. Distrib. 10(15), 3764–3776 (2016)

    Article  Google Scholar 

  17. W. Tan, Unified tuning of PID load frequency controller for power systems via IMC. IEEE Trans. Power Syst. 25(1), 341–350 (2010)

    Article  Google Scholar 

  18. B.K. Sahu, T.K. Pati, J.R. Nayak, S. Panda, S.K. Kar, A novel hybrid LUS-TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system. Int. J. Electr. Power Energy Syst. 74(1), 58–69 (2016)

    Article  Google Scholar 

  19. W. Tan, Tuning of PID load frequency controller for power systems. Energy Convers. Manag. 50(6), 1465–1472 (2009)

    Article  Google Scholar 

  20. S. Sondhi, Y.V. Hote, Fractional order PID controller for load frequency control. Energy Convers. Manag. 85(1), 343–353 (2014)

    Article  Google Scholar 

  21. S.A. Taher, M. Hajiakbari Fini, S. Falahati Aliabadi, Fractional order PID controller design for LFC in electric power systems using imperialist competitive algorithm. Ain Shams Eng. J. 5(1), 121–135 (2014)

    Google Scholar 

  22. G. Madgy, G. Shabib, A.A. Elbaset, Y. Mitani, Renewable Power Systems Dynamic Security (Springer, Switzerland, 2020)

    Google Scholar 

  23. T. Kerdphol, F.S. Rahman, M. Watanabe, Y. Mitani, D. Turschner, H.P. Beck, Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation. IEEE Access 7(1), 14422–14433 (2019)

    Article  Google Scholar 

  24. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control—Analysis and Design, 2nd ed. (Wiley, USA, 2005)

    Google Scholar 

  25. K.S. Hong, U.H. Shah, Feedback control, in Dynamics and Control of Industrial Cranes (Springer, Singapore, 2019)

    Google Scholar 

  26. H. Bevrani, I. Francois, T. Ise, Microgrid Dynamics and Control (Wiley, Hoboken, NJ, USA, 2017)

    Book  Google Scholar 

  27. Y. Zhang, Q.G. Wang, K.J. Astrom, Dominant pole placement for multi-loop control systems. Automatica 38(7), 1213–1220 (2002)

    Article  MathSciNet  Google Scholar 

  28. R. Vilanova, IMC based Robust PID design: tuning guidelines and automatic tuning. J. Process Control 18(1), 61–70 (2008)

    Article  Google Scholar 

  29. H. Bevrani, Robust Power System Frequency Control, 2nd ed. (Springer, New York, USA, 2014)

    Google Scholar 

  30. I. Boiko, Non-parametric Tuning of PID Controllers (Springer-Verlag, London, UK, 2013)

    Google Scholar 

  31. MATLAB, Introduction: PID controller design Matlab (MathWorks, USA, 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerdphol, T., Rahman, F., Watanabe, M., Mitani, Y. (2021). Application of PI/PID Control for Virtual Inertia Synthesis. In: Virtual Inertia Synthesis and Control. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-57961-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57961-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57960-9

  • Online ISBN: 978-3-030-57961-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics