Skip to main content

Fundamental Concepts of Inertia Power Compensation and Frequency Control

  • Chapter
  • First Online:
Virtual Inertia Synthesis and Control

Part of the book series: Power Systems ((POWSYS))

  • 754 Accesses

Abstract

The inertia power generated by the rotating mass (rotor) of a synchronous generator plays a significant role in slowing down the frequency oscillation and has an active role in the system frequency stability during a disturbance. Lower system inertia could lead to a significantly faster change in the system frequency, resulting in the degradation of system frequency stability. A rapid frequency deviation can lead to system instability, collapse, and power blackout. Thus, by understanding the concept of inertia and its role in the power system, it would give a better insight on how to deal with the frequency problem caused by low system inertia. To give a clear understanding of the inertia compensation and frequency control, this chapter elaborates on the subject of active power-based inertia compensation regarding power system frequency control, including its basic concept and definition. Afterward, the primary, secondary, tertiary, and emergency control loops for power system frequency control are discussed in detail. A frequency response model is provided and its utilization for the sake of dynamic analysis and simulation regarding virtual inertia is elaborated. Finally, the past achievements regarding the inertia power compensation for system frequency control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bevrani, Robust Power System Frequency Control, 2nd ed. (Springer, New York, USA, 2014)

    Google Scholar 

  2. P. Kundur, Power System Stability and Control (McGraw-Hill, New York, USA, 1994)

    Google Scholar 

  3. ENTSO-E, Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe: Requirements and Impacting Factors, Final Report, Brussels, Belgium (2016)

    Google Scholar 

  4. ENTSO-E Nordic Analysis Group, Future system inertia, Final Report, Brussels, Belgium (2015)

    Google Scholar 

  5. I. Dudurych, M. Burke, L. Fisher, M. Eager, K. Kelly, Operational security challenges and tools for a synchronous power system with high penetration of non-conventional sources. CIGRE Sess. 46 (2016)

    Google Scholar 

  6. P.F. Frack, P.E. Mercado, M.G. Molina, Extending the VISMA concept to improve the frequency stability in micrsogrids, in Proc. International Conference on Intelligent Systems Application to Power Systems (ISAP 2015), 1-6 (2015)

    Google Scholar 

  7. T. Kerdphol, F.S. Rahman, M. Watanabe, Y. Mitani, D. Turschner, H.P. Beck, Extended virtual inertia control design for power system frequency regulation, in Proc. IEEE PES GTD Grand International Conference and Exposition Asia, 97-101 (2019)

    Google Scholar 

  8. V. Gevorgian, Y. Zhang, E. Ela, Investigating the impacts of wind generation participation in interconnection frequency response. IEEE Trans. Sustain. Energy 6(3), 1004–1012 (2015)

    Article  Google Scholar 

  9. S. Sharma, S.H. Huang, N.D.R. Sarma, System inertial frequency response estimation and impact of renewable resources in ERCOT interconnection, in Proc. IEEE Power and Energy Society General Meeting (IEEE PES GM), 1-6 (2011)

    Google Scholar 

  10. J. Conto, Grid challenges on high penetration levels of wind power, in Proc. IEEE Power and Energy Society General Meeting (IEEE PES GM), 1-3 (2012)

    Google Scholar 

  11. H. Gu, R. Yan, T.K. Saha, Minimum synchronous inertia requirement of renewable power systems. IEEE Trans. Power Syst. 33(2), 1533–1543 (2018)

    Article  Google Scholar 

  12. R. Yan, T.K. Saha, N. Modi, N. Al Masood, M. Mosadeghy, The combined effects of high penetration of wind and PV on power system frequency response. Appl. Energy 145(1), 320–330 (2015)

    Google Scholar 

  13. J. Alipoor, Y. Miura, T. Ise, Stability assessment and optimization methods for microgrid with multiple VSG units. IEEE Trans. Smart Grid 9(2), 1462–1471 (2018)

    Article  Google Scholar 

  14. T. Kerdphol, F.S. Rahman, M. Watanabe, Y. Mitani, D. Turschner, H.P. Beck, Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulations. IEEE Access 7(1), 14422–14433 (2019)

    Article  Google Scholar 

  15. H. Bevrani, I. Francois, T. Ise, Microgrid Dynamics and Control (Wiley, Hoboken, New Jersey, USA, 2017)

    Book  Google Scholar 

  16. DNV KEMA, RoCoF, An independent analysis on the ability of generators to ride through rate of change of frequency values up to 2Hz/s., Final Report, London, UK (2013)

    Google Scholar 

  17. P.M. Ashton, C.S. Saunders, G.A. Taylor, A.M. Carter, M.E. Bradley, Inertia estimation of the GB power system using synchrophasor measurements. IEEE Trans. Power Syst. 30(2), 701–709 (2015)

    Article  Google Scholar 

  18. Australian Energy Market Operator (AEMO), International Review of Frequency Control Adaptation, Final Report, NSW, Austrilia (2017)

    Google Scholar 

  19. ERCOT, Future Ancillary Services in ERCOT, Technical Report, Texas, USA (2013).

    Google Scholar 

  20. EirGrid, RoCoF Alternative & Complementary Solutions Project: Phase 2, Study Report, EirGrid, Dublin, Ireland (2016)

    Google Scholar 

  21. A. Kurita et al., Multiple timescale power system dynamic simulation. IEEE Trans. Power Syst. 8(1), 216–223 (1993)

    Article  Google Scholar 

  22. E. Rakhshani, D. Remon, A.M. Cantarellas, J.M. Garcia, P. Rodriguez, Virtual synchronous power strategy for multiple HVDC interconnections of multi-area AGC power systems. IEEE Trans. Power Syst. 32(3), 1665–1677 (2017)

    Article  Google Scholar 

  23. P. Rodriguez, E. Rakhshani, A. Mir Cantarellas, D. Remon, Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems, IET Gener. Transm. Distrib. 10(6), 1458–1469 (2016)

    Google Scholar 

  24. E. Rakhshani, P. Rodriguez, Inertia emulation in AC/DC interconnected power systems using derivative technique considering frequency measurement effects. IEEE Trans. Power Syst. 32(5), 3338–3351 (2017)

    Article  Google Scholar 

  25. T. Kerdphol, F.S. Rahman, M. Watanabe, Y. Mitani, Robust virtual inertia control of a low inertia microgrid considering frequency measurement effects. IEEE Access 7(1), 57550–57560 (2019)

    Article  Google Scholar 

  26. H. Bevrani, M.R. Feizi, S. Ataee, Robust frequency control in an islanded microgrid: H∞ and μ-synthesis approaches. IEEE Trans. Smart Grid 7(2), 706–717 (2016)

    Google Scholar 

  27. F. Daneshfar, H. Bevrani, Load–frequency control: a GA-based multi-agent reinforcement learning. IET Gener. Transm. Distrib. 4(1), 13 (2010)

    Article  Google Scholar 

  28. Z. Li, W. Wu, M. Shahidehpour, B. Zhang, Adaptive robust tie-line scheduling considering wind power uncertainty for interconnected power systems. IEEE Trans. Power Syst. 31(4), 2701–2713 (2016)

    Article  Google Scholar 

  29. C. Luo, H.G. Far, H. Banakar, P.K. Keung, B.T. Ooi, Estimation of wind penetration as limited by frequency deviation. IEEE Trans. Energy Convers. 22(3), 783–791 (2007)

    Article  Google Scholar 

  30. N. Jaleeli, L.S. Vanslyck, Nerc’s new control performance standards. IEEE Trans. Power Syst. 14(3), 1092–1099 (1999)

    Article  Google Scholar 

  31. M. Yao, R.R. Shoults, R. Keim, AGC logic based on NERC’s new control performance standard and disturbance control standard. IEEE Trans. Power Syst. 15(2), 852–857 (2000)

    Article  Google Scholar 

  32. N.B. Hoonchareon, C.M. Ong, R.A. Kramer, Feasibility of decomposing ACĒ 1 to identify the impact of selected loads on CPS1 and CPS2. IEEE Trans. Power Syst. 17(3), 752–756 (2002)

    Article  Google Scholar 

  33. H. Bevrani, M. Watanabe, Y. Mitani, Power System Monitoring and Control (Wiley, New Jersey, USA, 2014)

    Book  Google Scholar 

  34. NERC, Operating Manual (Princeton, NJ, USA, 2002)

    Google Scholar 

  35. P. Horacek, Securing electrical power system operation, in Handbook of Automation (Springer, 2009), pp. 1139–1163

    Google Scholar 

  36. N. Jalili, L.S. Vanslyck, Control Performance Standards and Procedures for Interconnected operation, Final Report, EPRI, USA (1997)

    Google Scholar 

  37. A. Ibraheem, P. Kumar, D.P. Kothari, Recent philosophies of automatic generation control strategies in power systems. IEEE Trans. Power Syst. 20(1), 346–357 (2005)

    Article  Google Scholar 

  38. C. Concordia, L.K. Kirchmayer, Tie-line power and frequency control of electric power systems. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 72, 562–572 (1953).

    Google Scholar 

  39. L.K. Kirchmayer, Economic Control of Interconnected Systems (Wiley, NY, USA, 1959)

    Google Scholar 

  40. T. Kerdphol, M. Watanabe, Y. Mitani, V. Phunpeng, Applying virtual inertia control topology to SMES system for frequency stability improvement of low-inertia microgrids driven by high renewables. Energies 12(3902), 1–16 (2019)

    Google Scholar 

  41. IEEE Committee Report, Standard definitions of terms for automatic generation control on electric power systems. IEEE Trans Power Syst. PAS 89, 1356–1364 (1970)

    Google Scholar 

  42. IEEE PES Committee Report, Dynamic models for steam and hydro-turbines in power system studies. IEEE Trans Power Syst. PAS 92, 455–463 (1973)

    Google Scholar 

  43. O.I. Elgerd, C.E. Fosha, Optimum megawatt-frequency control of multiarea electric energy systems. IEEE Trans. Power Appar. Syst. PAS 89, 556–563 (1970)

    Google Scholar 

  44. C.E. Fosha, O.I. Elgerd, The megawatt-frequency control problem: a new approach via optimal control theory. IEEE Trans. Power Appar. Syst. PAS 89, 563–577 (1970)

    Google Scholar 

  45. IEEE PES Working Group, Hydraulic turbine and turbine control models for system dynamic studies. IEEE Trans. Power Syst. PERS 7(1), 167–174 (1992)

    Google Scholar 

  46. IEEE PES Committee Report, Current operating problems associated with automatic generation control. IEEE Trans. Power Appar. Syst. 7(3), 1106–1112 (1979)

    Google Scholar 

  47. J. Fang, H. Li, Y. Tang, F. Blaabjerg, On the inertia of future more-electronics power systems. IEEE J. Emerg. Sel. Top. Power Electron. 7(4), 2130–2146 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerdphol, T., Rahman, F., Watanabe, M., Mitani, Y. (2021). Fundamental Concepts of Inertia Power Compensation and Frequency Control. In: Virtual Inertia Synthesis and Control. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-57961-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57961-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57960-9

  • Online ISBN: 978-3-030-57961-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics