Abstract
The system statement and preliminaries are given in Sect. 8.2. Section 8.3 describes the design of DTFO control scheme based on the output of DTDO, the DTFO theory and the BC technology, and the stability of the closed-loop system signals is analyzed by using Lyapunov stability theory in Sect. 8.3. Simulation studies are shown in Sect. 8.4 to demonstrate the effectiveness of the proposed control approaches, followed by some concluding remarks in Sect. 8.5.
This is a preview of subscription content, access via your institution.
Buying options













References
Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 416–424 (2013)
Ionescu, C., Lopes, A., Copot, D., et al.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)
Sopasakis, P., Sarimveis, H., Macheras, P., et al.: Fractional calculus in pharmacokinetics. J. Pharmacokinet. Pharmacodyn. 45(1), 107–125 (2018)
Shivanian, E., Jafarabadi, A.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)
Chen, W.-C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5), 1305–1314 (2008)
Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)
Tacha, O., Volos, C.K., Kyprianidis, I.M., et al.: Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Appl. Math. Comput. 276, 200–217 (2016)
Škovránek, T., Podlubny, I., Petráš, I.: Modeling of the national economies in state-space: a fractional calculus approach. Econ. Model. 29(4), 1322–1327 (2012)
Flores-Tlacuahuac, A., Biegler, L.T.: Optimization of fractional order dynamic chemical processing systems. Ind. Eng. Chem. Res. 53(13), 5110–5127 (2014)
Yadav, V.K., Das, S., Bhadauria, B.S., et al.: Stability analysis, chaos control of a fractional order chaotic chemical reactor system and its function projective synchronization with parametric uncertainties. Chin. J. Phys. 55(3), 594–605 (2017)
Yu, W., Luo, Y., Chen, Y., et al.: Frequency domain modelling and control of fractional-order system for permanent magnet synchronous motor velocity servo system. IET Control Theory Appl. 10(2), 136–143 (2016)
Gutierrez, R.E., Rosario, J.M., Tenreiro Machado, J.: Fractional order calculus: basic concepts and engineering applications. Math. Problems Eng. 2010, Article ID 375858, 19p (2010)
Abbas, I.A.: A problem on functional graded material under fractional order theory of thermoelasticity. Theoret. Appl. Fract. Mech. 74, 18–22 (2014)
Tripathy, M.C., Mondal, D., Biswas, K., et al.: Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circuit Theory Appl. 43(9), 1183–1196 (2015)
Ebaid, A.: Analysis of projectile motion in view of fractional calculus. Appl. Math. Model. 35(3), 1231–1239 (2011)
Manabe, S.: A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn. 29(1–4), 251–268 (2002)
Aboelela, M.A., Ahmed, M.F., Dorrah, H.T.: Design of aerospace control systems using fractional PID controller. J. Adv. Res. 3(3), 225–232 (2012)
Seyedtabaii, S.: New flat phase margin fractional order PID design: perturbed UAV roll control study. Robot. Auton. Syst. 96, 58–64 (2017)
Chao, H., Luo, Y., Di, L., et al.: Roll-channel fractional order controller design for a small fixed-wing unmanned aerial vehicle. Control Eng. Pract. 18(7), 761–772 (2010)
Luo, Y., Chao, H., Di, L., et al.: Lateral directional fractional order \((PI)^\alpha \) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. IET Control Theory Appl. 5(18), 2156–2167 (2011)
Han, J., Di, L., Coopmans, C., et al.: Pitch loop control of a VTOL UAV using fractional order controller. J. Intell. Robot. Syst. 73(1–4), 187–195 (2014)
Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)
Machado, J.: Discrete-time fractional-order controllers. Fract. Calcu. Appl. Anal. 4, 47–66 (2001)
Ma, C., Hori, Y.: The time-scaled trapezoidal integration rule for discrete fractional order controllers. Nonlinear Dyn. 38(1–4), 171–180 (2004)
Barbosa, R.S., Machado, J.T.: Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytech. Hung. 3(4), 5–22 (2006)
Das, S., Pan, I., Halder, K., et al.: LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index. Appl. Math. Model. 37(6), 4253–4268 (2013)
Merrikh-Bayat, F., Mirebrahimi, N., Khalili, M.R.: Discrete-time fractional-order PID controller: definition, tuning, digital realization and some applications. Int. J. Control Autom. Syst. 13(1), 81–90 (2015)
Huang, L., Wang, L., Shi, D.: Discrete fractional order chaotic systems synchronization based on the variable structure control with a new discrete reaching-law. IEEE/CAA J. Autom. Sin. (2016). https://doi.org/10.1109/JAS.2016.7510148
Sun, G., Ma, Z., Yu, J.: Discrete-time fractional order terminal sliding mode tracking control for linear motor. IEEE Trans. Ind. Electron. 65(4), 3386–3394 (2018)
Mareels, I.M., Penfold, H., Evans, R.J.: Controlling nonlinear time-varying systems via Euler approximations. Automatica 28(4), 681–696 (1992)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Shao, S., Chen, M., Shi, P. (2021). DTFO Control for UAV with External Disturbances. In: Robust Discrete-Time Flight Control of UAV with External Disturbances. Studies in Systems, Decision and Control, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-57957-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-57957-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57956-2
Online ISBN: 978-3-030-57957-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)