Skip to main content

DTFO Control for UAV with External Disturbances

  • 465 Accesses

Part of the Studies in Systems, Decision and Control book series (SSDC,volume 317)

Abstract

The system statement and preliminaries are given in Sect. 8.2. Section 8.3 describes the design of DTFO control scheme based on the output of DTDO, the DTFO theory and the BC technology, and the stability of the closed-loop system signals is analyzed by using Lyapunov stability theory in Sect. 8.3. Simulation studies are shown in Sect. 8.4 to demonstrate the effectiveness of the proposed control approaches, followed by some concluding remarks in Sect. 8.5.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-57957-9_8
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-57957-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11
Fig. 8.12
Fig. 8.13

References

  1. Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 416–424 (2013)

    CrossRef  Google Scholar 

  2. Ionescu, C., Lopes, A., Copot, D., et al.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)

    CrossRef  MathSciNet  Google Scholar 

  3. Sopasakis, P., Sarimveis, H., Macheras, P., et al.: Fractional calculus in pharmacokinetics. J. Pharmacokinet. Pharmacodyn. 45(1), 107–125 (2018)

    CrossRef  Google Scholar 

  4. Shivanian, E., Jafarabadi, A.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)

    MATH  Google Scholar 

  5. Chen, W.-C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5), 1305–1314 (2008)

    CrossRef  Google Scholar 

  6. Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Tacha, O., Volos, C.K., Kyprianidis, I.M., et al.: Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Appl. Math. Comput. 276, 200–217 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Škovránek, T., Podlubny, I., Petráš, I.: Modeling of the national economies in state-space: a fractional calculus approach. Econ. Model. 29(4), 1322–1327 (2012)

    CrossRef  Google Scholar 

  9. Flores-Tlacuahuac, A., Biegler, L.T.: Optimization of fractional order dynamic chemical processing systems. Ind. Eng. Chem. Res. 53(13), 5110–5127 (2014)

    CrossRef  Google Scholar 

  10. Yadav, V.K., Das, S., Bhadauria, B.S., et al.: Stability analysis, chaos control of a fractional order chaotic chemical reactor system and its function projective synchronization with parametric uncertainties. Chin. J. Phys. 55(3), 594–605 (2017)

    CrossRef  Google Scholar 

  11. Yu, W., Luo, Y., Chen, Y., et al.: Frequency domain modelling and control of fractional-order system for permanent magnet synchronous motor velocity servo system. IET Control Theory Appl. 10(2), 136–143 (2016)

    CrossRef  MathSciNet  Google Scholar 

  12. Gutierrez, R.E., Rosario, J.M., Tenreiro Machado, J.: Fractional order calculus: basic concepts and engineering applications. Math. Problems Eng. 2010, Article ID 375858, 19p (2010)

    Google Scholar 

  13. Abbas, I.A.: A problem on functional graded material under fractional order theory of thermoelasticity. Theoret. Appl. Fract. Mech. 74, 18–22 (2014)

    CrossRef  Google Scholar 

  14. Tripathy, M.C., Mondal, D., Biswas, K., et al.: Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circuit Theory Appl. 43(9), 1183–1196 (2015)

    CrossRef  Google Scholar 

  15. Ebaid, A.: Analysis of projectile motion in view of fractional calculus. Appl. Math. Model. 35(3), 1231–1239 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Manabe, S.: A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn. 29(1–4), 251–268 (2002)

    CrossRef  MATH  Google Scholar 

  17. Aboelela, M.A., Ahmed, M.F., Dorrah, H.T.: Design of aerospace control systems using fractional PID controller. J. Adv. Res. 3(3), 225–232 (2012)

    CrossRef  Google Scholar 

  18. Seyedtabaii, S.: New flat phase margin fractional order PID design: perturbed UAV roll control study. Robot. Auton. Syst. 96, 58–64 (2017)

    CrossRef  Google Scholar 

  19. Chao, H., Luo, Y., Di, L., et al.: Roll-channel fractional order controller design for a small fixed-wing unmanned aerial vehicle. Control Eng. Pract. 18(7), 761–772 (2010)

    CrossRef  Google Scholar 

  20. Luo, Y., Chao, H., Di, L., et al.: Lateral directional fractional order \((PI)^\alpha \) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. IET Control Theory Appl. 5(18), 2156–2167 (2011)

    MathSciNet  Google Scholar 

  21. Han, J., Di, L., Coopmans, C., et al.: Pitch loop control of a VTOL UAV using fractional order controller. J. Intell. Robot. Syst. 73(1–4), 187–195 (2014)

    CrossRef  Google Scholar 

  22. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)

    CrossRef  MATH  Google Scholar 

  23. Machado, J.: Discrete-time fractional-order controllers. Fract. Calcu. Appl. Anal. 4, 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Ma, C., Hori, Y.: The time-scaled trapezoidal integration rule for discrete fractional order controllers. Nonlinear Dyn. 38(1–4), 171–180 (2004)

    CrossRef  MATH  Google Scholar 

  25. Barbosa, R.S., Machado, J.T.: Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytech. Hung. 3(4), 5–22 (2006)

    Google Scholar 

  26. Das, S., Pan, I., Halder, K., et al.: LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index. Appl. Math. Model. 37(6), 4253–4268 (2013)

    CrossRef  MathSciNet  Google Scholar 

  27. Merrikh-Bayat, F., Mirebrahimi, N., Khalili, M.R.: Discrete-time fractional-order PID controller: definition, tuning, digital realization and some applications. Int. J. Control Autom. Syst. 13(1), 81–90 (2015)

    CrossRef  Google Scholar 

  28. Huang, L., Wang, L., Shi, D.: Discrete fractional order chaotic systems synchronization based on the variable structure control with a new discrete reaching-law. IEEE/CAA J. Autom. Sin. (2016). https://doi.org/10.1109/JAS.2016.7510148

  29. Sun, G., Ma, Z., Yu, J.: Discrete-time fractional order terminal sliding mode tracking control for linear motor. IEEE Trans. Ind. Electron. 65(4), 3386–3394 (2018)

    CrossRef  Google Scholar 

  30. Mareels, I.M., Penfold, H., Evans, R.J.: Controlling nonlinear time-varying systems via Euler approximations. Automatica 28(4), 681–696 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyi Shao .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Shao, S., Chen, M., Shi, P. (2021). DTFO Control for UAV with External Disturbances. In: Robust Discrete-Time Flight Control of UAV with External Disturbances. Studies in Systems, Decision and Control, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-57957-9_8

Download citation