Skip to main content

Discrete-Time Adaptive NN Tracking Control of an Uncertain UAV System Based on DTDO

  • Chapter
  • First Online:
Robust Discrete-Time Flight Control of UAV with External Disturbances

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 317))

Abstract

Section 4.2 details the problem formulation. In Sect. 4.3, the NN is used to approach the system uncertainties in the UAV attitude dynamics model. A DTDO based on the NN is also designed in Sect. 4.3, and the designed DTDO is used to estimate the external disturbance. Furthermore, according to the tracking differentiator with discrete-time form, the NN-based nonlinear DTDO and the BC technology, a discrete-time controller based on the NN is designed, and discrete-time Lyapunov stability theory is used to prove that the designed discrete-time controller can ensure the boundedness of closed-loop system signals in Sect. 4.3. The UAV attitude dynamic model with wind disturbance and system uncertainties is simulated and analyzed in Sect. 4.4, and the simulation results further illustrate the effectiveness of the proposed discrete-time flight control scheme, followed by drawing some conclusions in Sect. 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suresh, S., Kannan, N.: Direct adaptive neural flight control system for an unstable unmanned aircraft. Appl. Soft Comput. 8(2), 937–948 (2008)

    Google Scholar 

  2. Suresh, S., Omkar, S.N., Mani, V., et al.: Direct adaptive neural flight controller for F-8 fighter aircraft. J. Guid. Control Dyn. 29(2), 454–464 (2006)

    Google Scholar 

  3. Lee, T., Kim, Y.: Nonlinear adaptive flight control using backstepping and neural networks controller. J. Guid. Control Dyn. 24(4), 675–682 (2001)

    Google Scholar 

  4. Lei, X., Ge, S.S., Fang, J.: Adaptive neural network control of small unmanned aerial rotorcraft. J. Intell. Robot. Syst. 75(2), 331–341 (2014)

    Google Scholar 

  5. Zhang, C., Hu, H., Wang, J.: An adaptive neural network approach to the tracking control of micro aerial vehicles in constrained space. Int. J. Syst. Sci. 48(1), 84–94 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bu, X., Wu, X., Wei, D., et al.: Neural-approximation-based robust adaptive control of flexible air-breathing hypersonic vehicles with parametric uncertainties and control input constraints. Inf. Sci. 346, 29–43 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Lei, X., Lu, P.: The adaptive radial basis function neural network for small rotary-wing unmanned aircraft. IEEE Trans. Ind. Electron. 61(9), 4808–4815 (2014)

    Google Scholar 

  8. Chen, W.-H.: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 26(1), 161–166 (2003)

    Google Scholar 

  9. Xu, B.: Disturbance observer-based dynamic surface control of transport aircraft with continuous heavy cargo airdrop. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 161–170 (2017)

    Google Scholar 

  10. He, W., Yan, Z., Sun, C., et al.: Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans. Cybern. 47(10), 3452–3465 (2017)

    Google Scholar 

  11. Chen, M., Ren, B., Wu, Q., et al.: Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci. China Inf. Sci. 58(7), 1–12 (2015)

    MathSciNet  Google Scholar 

  12. Chen, F., Lei, W., Zhang, K., et al.: A novel nonlinear resilient control for a quadrotor uav via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 85(2), 1281–1295 (2016)

    MATH  Google Scholar 

  13. Besnard, L., Shtessel, Y.B., Landrum, B.: Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J. Frankl. Inst. 349(2), 658–684 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Lee, K., Back, J., Choy, I.: Nonlinear disturbance observer based robust attitude tracking controller for quadrotor UAVs. Int. J. Control Autom. Syst. 12(6), 1266–1275 (2014)

    Google Scholar 

  15. Wang, H., Chen, M.: Trajectory tracking control for an indoor quadrotor UAV based on the disturbance observer. Trans. Inst. Meas. Control 38(6), 675–692 (2016)

    Google Scholar 

  16. Yang, J., Li, S., Sun, C., et al.: Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1263–1275 (2013)

    Google Scholar 

  17. Wu, G., Meng, X.: Nonlinear disturbance observer based robust backstepping control for a flexible air-breathing hypersonic vehicle. Aerosp. Sci. Technol. 54, 174–182 (2016)

    Google Scholar 

  18. Sun, H., Li, S., Yang, J., et al.: Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances. IET Control Theory Appl. 8(17), 1852–1865 (2014)

    Google Scholar 

  19. Chen, M., Yu, J.: Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dyn. 82(4), 1671–1682 (2015)

    Article  MathSciNet  Google Scholar 

  20. Lu, H., Liu, C., Guo, L., et al.: Flight control design for small-scale helicopter using disturbance-observer-based backstepping. J. Guid. Control Dyn. 38(11), 2235–2240 (2015)

    Google Scholar 

  21. Han, Y., Li, P., Zheng, Z.: A non-decoupled backstepping control for fixed-wing UAVs with multivariable fixed-time sliding mode disturbance observer. In: Transactions of the Institute of Measurement and Control (2018). https://doi.org/10.1177/0142331218793178

  22. Smith, J., Su, J., Liu, C., et al.: Disturbance observer based control with anti-windup applied to a small fixed wing UAV for disturbance rejection. J. Intell. Robot. Syst. 88(2–4), 329–346 (2017)

    Google Scholar 

  23. Osa, Y., Mabuchi, T., Uchikado, S.: Synthesis of discrete time adaptive flight control system using nonlinear model matching. IEEE Int. Symp. Ind. Electron. 1, 58–63 (2001)

    Google Scholar 

  24. Xiong, J.-J., Zhang, G.: Discrete-time sliding mode control for a quadrotor UAV. Optik 127(8), 3718–3722 (2016)

    Google Scholar 

  25. Jiang, B., Chowdhury, F.N.: Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Trans. Control Syst. Technol. 13(3), 493–499 (2005)

    Google Scholar 

  26. Xu, B., Sun, F., Yang, C., et al.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Xu, B., Wang, D., Sun, F., et al.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Xu, B., Zhang, Y.: Neural discrete back-stepping control of hypersonic flight vehicle with equivalent prediction model. Neurocomputing 154, 337–346 (2015)

    Google Scholar 

  29. Shin, D.-H., Kim, Y.: Nonlinear discrete-time reconfigurable flight control law using neural networks. IEEE Trans. Control Syst. Technol. 14(3), 408–422 (2006)

    Google Scholar 

  30. Mareels, I.M., Penfold, H., Evans, R.J.: Controlling nonlinear time-varying systems via euler approximations. Automatica 28(4), 681–696 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Yan, X., Chen, M., Feng, G. et al.: Fuzzy robust constrained control for nonlinear systems with input saturation and external disturbances. In: IEEE Transactions on Fuzzy Systems (2019). https://doi.org/10.1109/TFUZZ.2019.2952794

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyi Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, S., Chen, M., Shi, P. (2021). Discrete-Time Adaptive NN Tracking Control of an Uncertain UAV System Based on DTDO. In: Robust Discrete-Time Flight Control of UAV with External Disturbances. Studies in Systems, Decision and Control, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-57957-9_4

Download citation

Publish with us

Policies and ethics