Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 317))

  • 687 Accesses

Abstract

In Sect. 2.1, the mathematical model of the fixed-wing UAV with wind disturbance is derived, and the attitude nonlinear affine model of the UAV is introduced. Three kinds of input nonlinearities of control input are given in Sect. 2.2, including input saturation, dead-zone nonlinearity and a nonlinearity satisfying asymmetric saturation and dead-zone input. In Sect. 2.3, some lemmas and definitions are presented, and these lemmas and definitions will be applied to the design of discrete-time control for the nonlinear model of UAV with external disturbances, followed by drawing some conclusions in Sect. 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiao, Y., Jin, C.: Principles of Flight in Atmospheric Disturbances. National defense industry press, Beijing (1993)

    Google Scholar 

  2. Du, Y.: Study of Nonlinear Adaptive Attitude and Trajectory Control for Near Space Vehicles. Nanjing University of Aeronautics and Astronautics, Nanjing (2010)

    Google Scholar 

  3. Sonneveldt, L.: Nonlinear F-16 model description. Technical report, Delft University of Technology, Netherlands (2006)

    Google Scholar 

  4. Chen, M., Shao, S.-Y., Shi, P., et al.: Disturbance-observer-based robust synchronization control for a class of fractional-order chaotic systems. IEEE Trans. Circuits Syst. II: Express Br. 64(4), 417–421 (2017)

    Google Scholar 

  5. Chen, M., Ge, S.S.: Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Trans. Cybern. 43(4), 1213–1225 (2013)

    Google Scholar 

  6. Wen, C., Zhou, J., Liu, Z., et al.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Wang, X.-S., Su, C.-Y., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3), 407–413 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Hu, Q., Ma, G., Xie, L.: Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Automatica 44(2), 552–559 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Grimm, G., Hatfield, J., Postlethwaite, I., et al.: Antiwindup for stable linear systems with input saturation: an LMI-based synthesis. IEEE Trans. Autom. Control 48(9), 1509–1525 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Chen, B.M., Lee, T.H., Peng, K., et al.: Composite nonlinear feedback control for linear systems with input saturation: theory and an application. IEEE Trans. Autom. Control 48(3), 427–439 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Cao, Y.-Y., Lin, Z., Hu, T.: Stability analysis of linear time-delay systems subject to input saturation. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(2), 233–240 (2002)

    MathSciNet  MATH  Google Scholar 

  12. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)

    Google Scholar 

  13. Hu, Q.: Adaptive output feedback sliding-mode manoeuvring and vibration control of flexible spacecraft with input saturation. IET Control Theory Appl. 2(6), 467–478 (2008)

    MathSciNet  Google Scholar 

  14. Zhu, Z., Xia, Y., Fu, M., et al.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011)

    Google Scholar 

  15. Bošković, J.D., Li, S.-M., Mehra, R.K.: Robust adaptive variable structure control of spacecraft under control input saturation. J. Guid. Control Dyn. 24(1), 14–22 (2001)

    Google Scholar 

  16. Hu, Q., Xiao, B., Friswell, M.: Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation. IET Control Theory Appl. 5(2), 271–282 (2011)

    MathSciNet  Google Scholar 

  17. Bustan, D., Pariz, N., Sani, S.K.H.: Robust fault-tolerant tracking control design for spacecraft under control input saturation. ISA Trans. 53(4), 1073–1080 (2014)

    Google Scholar 

  18. Boskovic, J.D., Li, S.-M., Mehra, R.K.: Robust tracking control design for spacecraft under control input saturation. J. Guid. Control Dyn. 27(4), 627–633 (2004)

    Article  Google Scholar 

  19. Chen, M., Yu, J.: Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chin. J. Aeronaut. 28(3), 853–864 (2015)

    Article  Google Scholar 

  20. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51(3), 504–511 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Zhang, T.-P., Ge, S.S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44(7), 1895–1903 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Ibrir, S., Xie, W.F., Su, C.-Y.: Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica 43(3), 522–530 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Tong, S., Li, Y.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)

    Google Scholar 

  24. Hu, Q., Meng, Y., Wang, C., et al.: Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities. Aerosp. Sci. Technol. 73, 289–299 (2018)

    Google Scholar 

  25. An, H., Xia, H., Wang, C.: Barrier lyapunov function-based adaptive control for hypersonic flight vehicles. Nonlinear Dyn. 88(3), 1833–1853 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Wang, Y., Hu, J.: Improved prescribed performance control for air-breathing hypersonic vehicles with unknown deadzone input nonlinearity. ISA Trans. 79, 95–107 (2018)

    Google Scholar 

  27. Xu, B.: Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn. 80(3), 1509–1520 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Yang, Q., Chen, M.: Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity. Neurocomputing 174, 780–789 (2016)

    Google Scholar 

  29. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Chen, M., Ge, S.S., How, B.V.E.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Google Scholar 

  31. Cheng, J.: Fractional Difference Equation Theory. xiamen university press, Fujian (2011)

    Google Scholar 

  32. Chen, M., Shao, S.-Y., Jiang, B.: Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans. Cybern. 47(10), 3110–3123 (2017)

    Google Scholar 

  33. Zhang, J., Ge, S.S., Lee, T.H.: Direct RBF neural network control of a class of discrete-time non-affine nonlinear systems. In: Proceedings of the American Control Conference, pp. 424–429 (2002)

    Google Scholar 

  34. Han, J., Yuan, L.: The discrete form of tracking-differentiator. J. Syst. Sci. Math. Sci. 19(3), 268–273 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Ge, S.S., Zhang, J., Lee, T.H.: Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(4), 1630–1645 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyi Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, S., Chen, M., Shi, P. (2021). Modeling of UAV and Preliminaries. In: Robust Discrete-Time Flight Control of UAV with External Disturbances. Studies in Systems, Decision and Control, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-57957-9_2

Download citation

Publish with us

Policies and ethics