Skip to main content

Anti-inflammatory Role of Anthocyanins in the Prevention of Hyperhomocysteinemia-Mediated Cardiometabolic Diseases

  • Chapter
  • First Online:
Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia

Abstract

Inflammation is a natural clinical repair response of body’s immune system to protect its tissues from various noxious stimuli that continues to remodel throughout the lifecycle because of interactions between genes, lifestyles, and environments. There is a link between inflammation, elevated plasma homocysteine levels and cardiometabolic diseases. Multiple mechanisms have been proposed through which homocysteine can modulate the inflammatory response, though the exact mechanism is not clearly understood. The serum homocysteine concentration is considered as an independent risk factor for many disease conditions including cardiovascular diseases (CVD). Epidemiological evidence indicates that moderate consumption of anthocyanins is associated with reduced risk of atherosclerosis and cardiovascular diseases. However, a clear relationship between anthocyanin and homocysteine has not yet been developed. Anthocyanins are water soluble blue, red, and purple pigments, present in the vacuolar sap of the epidermal tissues of plant parts. As therapeutic agents, they are well-accepted in folk medicine worldwide and are linked to a myriad of health benefits. Anthocyanins impart an amazing role in lessening inflammation in body tissues. The molecular mechanisms involved in anti-inflammatory activities include inhibition of pro-inflammatory enzymes, such as cyclooxygenase-2, lipoxygenase and inducible nitric oxide (NO) synthase, inhibition of NF-kB and activating protein-1 (AP-1) and activation of phase II antioxidant detoxifying enzymes, mitogen-activated protein kinase (MAPK), protein kinase C and nuclear factor-erythroid 2-related factor 2. This chapter discusses the interrelationship between hyperhomocysteinemia, inflammation and anthocyanins, as well as the mechanisms of action and anti-inflammatory role of anthocyanins in the prevention of cardiometabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Govindaraju D, Atzmon G, Barzilai N (2015) Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genomic 4:23–32

    Article  Google Scholar 

  2. Rea JNM, Carvalho A, McNerlan SE, Alexander HD, Rea IM (2015) Genes and life-style factors in BELFAST nonagenarians: nature, nurture and narrative. Biogerontology 16:587–597

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y et al (2016) Host and environmental factors influencing individual human cytokine responses. Cell 167:1111e–1124e

    Article  CAS  Google Scholar 

  4. Liu YZ, Wang YX, Jiang CL (2017) Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci 11:316. https://doi.org/10.3389/fnhum.2017.00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211(2):144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Bio Sci Med Sci 69(Suppl 1):S4–S9

    Article  Google Scholar 

  7. Vendrame S, Klimis-Zacas D (2015) Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr Rev 73(6):348–358. https://doi.org/10.1093/nutrit/nuu066. Epub 2015 Apr 16. Review

    Article  PubMed  Google Scholar 

  8. Verschuur C, Agyemang-Prempeh A, Newman TA (2014) Inflammation is associated with a worsening of presbycusis: evidence from the MRC national study of hearing. Int J Audiol 53(7):469–475

    Article  PubMed  Google Scholar 

  9. Sarkar D, Fisher PB (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett 236(1):13–23

    Article  CAS  PubMed  Google Scholar 

  10. Woods JA, Wilund KR, Martin SA, Kistler BM (2012) Exercise, inflammation and aging. Aging Dis 3(1):130–140

    PubMed  Google Scholar 

  11. Capri M, Monti D, Salvioli S, Lescai F, Pierini M, Altilia S (2006) Complexity of anti-immunosenescence strategies in humans. Artif Organs 30(10):730–742

    Article  CAS  PubMed  Google Scholar 

  12. Chung HY, Kim HJ, Kim KW, Choi JS, Yu BP (2002) Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech 59(4):264–272

    Article  CAS  PubMed  Google Scholar 

  13. Carmel R, Jacobsen DW (2001) Homocysteine in health and disease. Cambridge University Press, Cambridge

    Google Scholar 

  14. Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH (2001) The kidney and homocysteine metabolism. J Am Soc Nephrol 12(10):2181–2189

    Article  CAS  PubMed  Google Scholar 

  15. Sen U, Pushpakumar SB, Amin MA, Tyagi SC (2014) Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator. Nitric Oxide 41:27–37. https://doi.org/10.1016/j.niox.2014.06.006. [PubMed: 24963795]

    Article  CAS  PubMed  Google Scholar 

  16. Chwatko G, Bald E (2002) Determination of different species of homocysteine in human plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A 949:141–151

    Article  CAS  PubMed  Google Scholar 

  17. Isobe C, Murata T, Sato C, Terayama Y (2005) Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci 77:1836–1843

    Article  CAS  PubMed  Google Scholar 

  18. Dinavahi R, Falkner B (2004) Relationship of homocysteine with cardiovascular disease and blood pressure. J Clin Hypertens (Greenwich) 6(9):494–498. quiz 499–00

    Article  CAS  Google Scholar 

  19. Brattstrom L, Wilcken DE, Ohrvik J, Brudin L (1998) Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 98(23):2520–2526

    Article  CAS  PubMed  Google Scholar 

  20. Davis SR, Quinlivan EP, Shelnutt KP, Ghandour H, Capdevila A, Coats BS, Wagner C, Shane B, Selhub J, Bailey LB, Shuster JJ, Stacpoole PW, Gregory JF 3rd (2005) Homocysteine synthesis is elevated but total remethylation is unchanged by the methylenetetrahydrofolate reductase 677C->T polymorphism and by dietary folate restriction in young women. J Nutr 135(5):1045–1050

    Article  CAS  PubMed  Google Scholar 

  21. Malinowska A, Chmurzynska A (2009) Polymorphism of genes encoding homocysteine metabolism-related enzymes and risk for cardiovascular disease. Nutr Res 29(10):685–695

    Article  CAS  PubMed  Google Scholar 

  22. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  23. Kruger WD, Wang L, Jhee KH, Singh RH, Elsas LJ II (2003) Cystathionine beta-synthase deficiency in Georgia (U.S.A.): correlation of clinical and biochemical phenotype with genotype. Hum Mutat 22(6):434–441

    Article  CAS  PubMed  Google Scholar 

  24. Cattaneo M (1997) Hyperhomocysteinemia: a risk factor for arterial and venous thrombotic disease. Int J Clin Lab Res 27(3):139–144

    Article  CAS  PubMed  Google Scholar 

  25. Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354:407–413

    Article  CAS  PubMed  Google Scholar 

  26. Refsum H, Ueland PM, Nygård O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62

    Article  CAS  PubMed  Google Scholar 

  27. Pasterkamp G, Algra A, Grobbee DE, Banga JD, van der Graaf Y (2002) Homocysteine and the stage of atherosclerotic disease: a study in patients suffering from clinically silent and clinically manifest atherosclerotic disease. Eur J Clin Investig 32:309–315

    Article  CAS  Google Scholar 

  28. Poddar R, Sivasubramanian N, Dibello PM, Robinson K, Jacobson D (2001) Homocysteine induces expression and secretion of monocyte chemo attractant protein-1 and interleukin-8 in human aortic endothelial cells: implication for vascular disease. Circulation 103:2717–2723

    Article  CAS  PubMed  Google Scholar 

  29. Wang G, Siow YL (2001) Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappa B in THP-1macrophages. Am J Physiol Heart Circ Physiol 280:H2840–H28H7

    Article  CAS  PubMed  Google Scholar 

  30. Zhongqun Y, Goran KH (2007) Innate immunity, macrophage activation and atherosclerosis. Immunol Rev 219:187–183

    Article  Google Scholar 

  31. Saadeddin SM, Habbab MA, Ferns GA (2002) Markers of inflammation and coronary artery disease. Med Sci Monit 8:5–12

    Google Scholar 

  32. Jian-Jun L, Chun-Hong F (2004) C-reactive protein is not only an inflammatory marker but also a direct cause of cardiovascular diseases. Med Hypotheses 62:499–496

    Article  CAS  Google Scholar 

  33. Springer SC, Silverstein J, Copeland K et al (2013) Management of type 2 diabetes mellitus in children and adolescents. Pediatrics 131:648–664

    Article  Google Scholar 

  34. Kuklina JEV, Tong X, George MG, Bansil P (2012) Epidemiology and prevention of stroke: a worldwide perspective. Expert Rev Neurother 12(2):199–108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Malik VS, Willett WC, Hu FB (2013) Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 9:13–27

    Article  PubMed  Google Scholar 

  36. Ndisang JF (2010) Role of heme oxygenase in inflammation, insulin-signalling, diabetes and obesity. Mediat Inflamm 2010:1–18

    Article  CAS  Google Scholar 

  37. Sheng CH, Du ZW, Song Y, Wu XD, Zhang YC, Wu M, Wang Q, Zhang GZ (2013) Human resistin inhibits myogenic differentiation and induces insulin resistance in myocytes. Biomed Res Int 2013:1–8. https://doi.org/10.1155/2013/804632

    Article  CAS  Google Scholar 

  38. Tsiotra PC, Boutati E Raptis SA (2013) High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. Biomed Res Int 2013:487081

    Article  PubMed  CAS  Google Scholar 

  39. Tangney CC, Rasmussen HE (2013) Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15(5):324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gibney ER, Milenkovic D, Combet E, Ruskovska T, Greyling A, González-Sarrías A et al (2019) Factors influencing the cardiometabolic response to (poly)phenols and phytosterols: a review of the cost action positive activities. Eur J Nutr 58(2):37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Valenza A, Bonfanti C, Pasini ME, Bellost P (2018) Anthocyanins function as anti-inflammatory agents in a drosophila model for adipose tissue macrophage infiltration. BioMed Res Int: Article ID 6413172, 9 pages. https://doi.org/10.1155/2018/6413172

  42. Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 78:570S–578S

    Article  CAS  PubMed  Google Scholar 

  43. Hou DX, Yanagita T, Uto T, Masuzaki S, Fujii M (2005) Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved. Biochem Pharmacol 70:417–425

    Article  CAS  PubMed  Google Scholar 

  44. Park SY, Le SP (2013) Effectiveness of crowberry on plasma total antioxidant status, lipid profile and homocysteine. J Food Nutr Res 1(4):37–41

    Google Scholar 

  45. Ogawa K, Sakakibara H, Iwata R, Ishii T, Sato T, Goda T, Shimoi K, Kumazawa S (2008) Anthocyanin composition and antioxidant activity of the Crowberry (Empetrum nigrum) and other berries. J Agric Food Chem 56(12):4457–4462

    Article  CAS  PubMed  Google Scholar 

  46. Chiva-Blanch G, Urpi-Sarda M, Ros E, Valderas-Martinez P, Casas R, Arranz S, Guillén M, Lamuela-Raventós RM, Llorach R, Andres-Lacueva C, Estruch R (2013) Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial. Clin Nutr 32:200–206

    Article  CAS  PubMed  Google Scholar 

  47. Andújar I, Recio MC, Ríos JL (2012) Cocoa polyphenols and their potential benefits for human health. Oxidative Med Cell Longev 2012:1–23

    Article  CAS  Google Scholar 

  48. Hodgson JM, Burke V, Beilin LJ, Croft KD, Puddey IB (2010) Can black tea influence plasma total homocysteine concentrations. Am J Clin Nutr 77:907–911

    Article  Google Scholar 

  49. Skoczynska A, Jêdrychowska I, Porêba R, Affelska-Jercha A, Turczyn B, Wojakowska A, Andrzejak R (2007) Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol Rep 59:177–182

    Google Scholar 

  50. Trombold JR, Barnes JN, Critchley L, Coyle EF (2010) Ellagitannin consumption improves strength recovery 2–3 d after eccentric exercise. Med Sci Sports Exerc 42:493–498

    Article  CAS  PubMed  Google Scholar 

  51. Casas-Agustench P, Bulló M, Salas-Salvadó J (2010) Nuts, inflammation and insulin resistance. Asia Pac J Clin Nutr 19:124–130

    CAS  PubMed  Google Scholar 

  52. Duthie SJ, Jenkinson AM, Crozier A, Mullen W, Pirie L, Kyle J, Yap LS, Christen P, Duthie GG (2006) The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur J Nutr 45:113–122

    Article  CAS  PubMed  Google Scholar 

  53. Nakagawa K, Maruyama Y, Miyazaw T (2002) Anthocyanin administration elevates plasma homocysteine in rats. J Nutr Sci Vitaminol 48:530–535

    Article  CAS  PubMed  Google Scholar 

  54. Hultberg M, Isaksson A, Andersson A, Hultberg B (2006) The polyphenol quercetin strongly increases homocysteine production in a human hepatoma (Hep G2) cell line. Clin Biochem 39(2):160–163

    Article  CAS  PubMed  Google Scholar 

  55. Morillas-Ruiz JM, Rubio-Perez JM, Albaladejo MD, Zfrilla P, Parra Vidal-Guevara ML (2010) Effect of an antioxidant drink on homocysteine levels in Alzheimer’s patients. Neurol Sci 299(1–2):175–178

    Article  CAS  Google Scholar 

  56. Sinopoli A, Calogero G, Bartolotta A (2019) Computational aspects of anthocyanidins and anthocyanins: a review. Food Chem 297:124898

    Article  CAS  PubMed  Google Scholar 

  57. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1361779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713

    Article  CAS  PubMed  Google Scholar 

  59. Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309

    Article  CAS  Google Scholar 

  60. He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  61. Gehm BD, McAndrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 94:14138–14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Welch CR, Wu Q, Simon JE (2008) Recent advances in anthocyanin analysis and characterization. Curr Anal Chem 4:75–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brouillard R (1982) Chapter 1 – chemical structure of anthocyanins. In: Markakis P (ed) Anthocyanins as food colors. Academic, New York, pp 1–40

    Google Scholar 

  64. Faria A, Fernandes I, Mateus N, Calhau C (2013) Bioavailability of anthocyanins. In: Ramawat KG, Merillon JM (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin/Heidelberg, pp 2465–2487

    Chapter  Google Scholar 

  65. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835

    Article  CAS  PubMed  Google Scholar 

  66. Andersen ØM, Jordheim M (2013) Basic anthocyanin chemistry and dietary sources. Anthocyanins Health Dis 1:13–89

    Google Scholar 

  67. Smeriglio A, Barreca D, Bellocco E, Trombetta D (2016) Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res 30:1265–1286

    Article  CAS  PubMed  Google Scholar 

  68. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    Article  CAS  PubMed  Google Scholar 

  69. Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46:508–520

    Article  CAS  PubMed  Google Scholar 

  70. Castaneda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  CAS  Google Scholar 

  71. De Pascual-Teresa S, Sanchez-Ballesta MT, García-Viguera C (2013) Anthocyanins. In: Ramawat KG, Merillon JM (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin/Heidelberg, pp 1803–1819

    Chapter  Google Scholar 

  72. Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362–369

    Article  CAS  PubMed  Google Scholar 

  73. Cevallos-Casals BA, Cisneros-Zevallos L (2003) Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. J Agric Food Chem 51(11):3313–3319

    Article  CAS  PubMed  Google Scholar 

  74. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48(11):1589–1500

    Article  CAS  PubMed  Google Scholar 

  75. Bąkowska-Barczak A (2005) Acylated anthocyanins as stable, natural food colorants – a review. Pol J Food Nutr Sci 14/55(2):107–116

    Google Scholar 

  76. Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18(9):477–483

    Article  CAS  PubMed  Google Scholar 

  77. Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower color. Plant Cell Physiol 39(11):1119–1126

    Article  CAS  Google Scholar 

  78. Mazza G, Francis FJ (1995) Anthocyanins in grapes and grape products. Crit Rev Food Sci Nutr 35(4):341–371

    Article  CAS  PubMed  Google Scholar 

  79. Barnard H, Dooley AN, Areshian G, Gasparyan B, Fau KF (2011) Chemical evidence for wine production around 4000 BCE in the Late Chalcolithic Near Eastern highlands. J Archaeol Sci 38(5):977–984

    Article  Google Scholar 

  80. Slimestad R, Solheim H (2002) Anthocyanins from black currants (Ribes nigrum L.). J Agric Food Chem 50(11):3228–3231

    Article  CAS  PubMed  Google Scholar 

  81. Yabuya T, Nakamura M, Iwashina T et al (1997) Anthocyanin-flavone copigmentation in bluish purple flowers of Japanese garden iris (Iris ensata Thunb.). Euphytica 98(3):163–167

    Article  CAS  Google Scholar 

  82. He K, Li X, Chen X, Ye X, Huang J, Jin Y, Li P, Deng Y, Jin Q, Shi Q, Shu H (2011) Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. J Ethnopharmacol 137(3):1135–1142

    Article  PubMed  Google Scholar 

  83. Blando F, Calabriso N, Berland H, Maiorano G, Gerardi C, Carluccio MA et al (2018) Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. Int J Mol Sci 19(1):169

    Article  PubMed Central  CAS  Google Scholar 

  84. Zhang Y-J, Gan R-Y, Li S, Zhou Y, Li A-N, Xu D-P et al (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules (Basel, Switz) 20(12):21138–21156

    Article  CAS  Google Scholar 

  85. Li D, Wang P, Luo Y, Zhao M, Chen F (2017) Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr 57(8):1729–1741

    Article  CAS  PubMed  Google Scholar 

  86. Shim SH, Kim JM, Choi CY, Kim CY, Park KH (2012) Ginkgo biloba extract and bilberry anthocyanins improve visual function in patients with normal tension glaucoma. J Med Food 15(9):818–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee B, Lee M, Lefevre M, Kim HR (2014) Anthocyanins inhibit lipogenesis dur ingadipocyte differentiation of 3T3-L1 preadipocytes. Plant Foods Hum Nutr 69(2):137–141

    Article  CAS  PubMed  Google Scholar 

  88. Nakamura S, Tanaka J, Imada T, Shimoda H, Tsubota K (2014) Delphinidin 3, 5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. J Funct Foods 10:346–354

    Article  CAS  Google Scholar 

  89. Kalt W, Hanneken A, Milbury P, Tremblay K (2010) Recent research on polyphenolics in vision and eye health. J Agric Food Chem 58(7):4001–4007

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y, Zhao L, Lu F et al (2015) Retinoprotective effects of bilberry anthocyanins via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in a visible light-induced retinal degeneration model in pigmented rabbits. Molecules 20(12):22395–22310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carrera-Quintanar L, López Roa RI, Quintero-Fabián S, Sánchez-Sánchez MA, Vizmanos B, Ortuño-Sahagún D (2018) Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat Inflamm 2018:9734845

    Article  CAS  Google Scholar 

  92. Huang W, Yen Z, Li D, Ma Y, Zhou J, Su Z (2018) Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Med Cell Longev 2018:1–10. Article ID 1862462

    Google Scholar 

  93. Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, Delzenne NM (2013) Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr 109(5):802–809

    Article  CAS  PubMed  Google Scholar 

  94. Esposito D, Chen A, Grace MH, Komarnytsky S, Lila MA (2014) Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro. J Agric Food Chem 62(29):7022–7028

    Article  CAS  PubMed  Google Scholar 

  95. Wu T, Tang Q, Yu Z, Gao Z, Hu H, Chen W et al (2014) Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice. Int J Food Sci Nutr 65(3):351–359

    Article  CAS  PubMed  Google Scholar 

  96. Alvarez-Suarez JM, Giampieri F, Tulipani S, Casoli T, Di Stefano G, González-Paramás AM, Santos-Buelga S, Busco F, Quiles JL, Cordero MD, Bompadre S, Mezzetti B, Battino M (2014) One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J Nutr Biochem 25(3):289–294

    Article  CAS  PubMed  Google Scholar 

  97. Guerra JF, Magalhães CL, Costa DC, Silva ME, Pedrosa ML (2011) Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. J Clin Biochem Nutr 49(3):188–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morais CA, de Rosso VV, Estadella D, Pisani LP (2016) Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem 33:1–7

    Article  CAS  PubMed  Google Scholar 

  99. Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK, Zhang J, Paturi G, Hedderley D, Bovy A, Schouten HJ, Putterill J, Allan AC, . Hellens RP. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 2014; 144(2):146–154

    Article  CAS  PubMed  Google Scholar 

  100. Graf D, Seifert S, Bub A, Fröhling B, Dold S, Unger F, Römpp A, Watz B (2013) Anthocyanin-rich juice does not affect gut-associated immunity in Fischer rats. Mol Nutr Food Res 57(10):1753–1761

    Article  CAS  PubMed  Google Scholar 

  101. Ju JH, Yoon HS, Park HJ, Kim MY, Shin HK, Park KY, Yang JO, Sohn MS, Do MS (2011) Anti-obesity and antioxidative effects of purple sweet potato extract in 3t3-l1 adipocytes in vitro. J Med Food 14:1097–1006

    Article  CAS  PubMed  Google Scholar 

  102. Huang H, Jiang X, Xiao Z, Yu L, Pham Q, Sun J, Chen P, Yokoyama W, Yu LL, Luo YS et al (2016) Red cabbage microgreens lower circulating low-density lipoprotein (ldl), liver cholesterol, and inflammatory cytokines in mice fed a high-fat diet. J Agric Food Chem 64:9161–9171

    Article  CAS  PubMed  Google Scholar 

  103. Sangsefidi ZS, Hasanizadeh S, Hosseinzadeh M (2018) Effect of purified anthocyanins or anthocyanin-rich extracts on C-reactive protein levels: a systematic review and meta-analysis of randomised clinical trials. Br J Nutr 120(12):1406–1414

    Article  CAS  PubMed  Google Scholar 

  104. Wu T, Yin J, Zhang G, Long H, Zheng X (2016) Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Mol Nutr Food Res 60:687–694

    Article  CAS  PubMed  Google Scholar 

  105. Defuria J, Bennett G, Strissel KJ, Perfield JW, Milbury PE, Greenberg AS, Obin MS (2009) Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by 753 reducing adipocyte death and its inflammatory sequelae. J Nutr 139(8):1510–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu T, Tang Q, Yu Z, Gao Z, Yu Z, , Song H, Zheng X, Chen W. Blueberry and mulberry juice prevent obesity development in c57bl/6 mice. PLoS One 2013; 8, e77585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Benn T, Kim B, Park YK, Wegner CJ, Harness E, Nam TG, Kim DO, Lee JS, Lee JY (2014) Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J Nutr Biochem 25:1019–1025

    Article  CAS  PubMed  Google Scholar 

  108. Farrell NJ, Norris GH, Ryan J, Porter CM, Jiang C, Blesso CN (2015) Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. Br J Nutr 114:1123–1131

    Article  CAS  PubMed  Google Scholar 

  109. Kim SY, Wi HR, Choi S, Ha TJ, Lee BW, Lee M (2015) Inhibitory effect of anthocyanin-rich black soybean testa (Glycine max (L.) merr.) on the inflammation-induced adipogenesis in a dio mouse model. J Funct Foods 14:623–633

    Article  CAS  Google Scholar 

  110. Dragon N, Marques A, Cintra DE, Soion C (2013) Freeze-dried jaboticaba peel powder improves insulin sensitivity in high-fat-fed mice. Br J Nutr 110(3):1–9

    Google Scholar 

  111. Qin B, Anderson RA (2012) An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. Br J Nutr 108:581–587

    Article  CAS  PubMed  Google Scholar 

  112. Seymour EM, Lewis SK, Urcuyo-Llanes DE, Tanone II, Kirakosyan A, Kaufman PB, Bolling SF (2009) Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J Med Food 12:935–942

    Article  CAS  PubMed  Google Scholar 

  113. Lee M, Sorn SR, Park Y, Park HK (2016) Anthocyanin rich-black soybean testa improved visceral fat and plasma lipid profiles in overweight/obese Korean adults: a randomized controlled trial. J Med Food 19:995–903

    Article  CAS  PubMed  Google Scholar 

  114. Dimmeler S (2009) Cardiovascular disease review series/EMBO. Mol Med 3(2):697

    Google Scholar 

  115. Kwak BR, Bäck M, Bochaton-Piallat M-L, Caligiuri G, Daemen MJAP, Davies PF et al (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35(43):3013–320d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fairlie-Jones L, Davison K, Fromentin E, Hill AM (2017) The effect of anthocyanin-rich foods or extracts on vascular function in adults: a systematic review and meta-analysis of randomised controlled trials. Nutrients 9(8):908

    Article  PubMed Central  CAS  Google Scholar 

  117. Koning RA, Grayson I, Weckbecker C (2015) The effects of bilberries, blackcurrants and their constituent anthocyanins on heart health in humans. Agro Food Ind Hi Tech 26(5):15–11

    Google Scholar 

  118. Karlsen A, Paur I, Bøhn SK et al (2010) Bilberry juice modulates plasma concentration of NF-kappa B related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr 49(6):345–355

    Article  CAS  PubMed  Google Scholar 

  119. Zhu Y, Xia M, Yang Y et al (2011) Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem 57(11):1524–1533

    Article  CAS  PubMed  Google Scholar 

  120. Ikeda I, Kobayashi M, Hamada T, Tsuda K, Goto H, Imaizumi K, Nozawa A, Sugimoto A, Kakuda T (2003) Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibitcholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. J Agric Food Chem 51:7303–7307

    Article  CAS  PubMed  Google Scholar 

  121. Guo H, Liu G, Zhong R, Wang Y, Wang D, Xia M (2012) Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis 11:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Takikawa M, Inoue S, Horio F, Tsuda T (2010) Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr 140:527–533

    Article  CAS  PubMed  Google Scholar 

  123. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341

    Article  CAS  PubMed  Google Scholar 

  124. Galic S, Loh K, Murray-Segal L, Steinberg GR, Andrews ZB, Kemp BE (2018) AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. elife 7:e32656

    Article  PubMed  PubMed Central  Google Scholar 

  125. Henriksen BS, Curtis ME, Fillmore N, Cardon BR, Thomson DM, Hancock CR (2013) The effects of chronic AMPK activation on hepatic triglyceride accumulation and glycerol 3-phosphate acyltransferase activity with high fat feeding. Diabetol Metab Syndr 5:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, N., Waly, M.I., Ali, A. (2021). Anti-inflammatory Role of Anthocyanins in the Prevention of Hyperhomocysteinemia-Mediated Cardiometabolic Diseases. In: Waly, M.I. (eds) Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia. Springer, Cham. https://doi.org/10.1007/978-3-030-57839-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57839-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57838-1

  • Online ISBN: 978-3-030-57839-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics