Skip to main content

Deep Learning Approach with Rotate-Shift Invariant Input to Predict Protein Homodimer Structure

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

Abstract

The ability to predict protein complexes is important for applications in drug design and generating models of high accuracy in the cell. Recently deep learning techniques showed a significant success in protein structure prediction, but a protein docking problem is unsolved yet. We developed a two-staged approach which consists of deep convolutional neural network to predict protein contact map for homodimers and optimization procedure based on gradient descent to build the homodimer structure from the contact map. Neural network uses the distance map calculated as all pairwise Euclidian distances between CB atoms of protein 3D structure as input, which is invariant to rotation and translation. The network has a large receptive filed to capture patterns in contacts between residues. The suggested approach could be generalized to heterodimers because it does not depend on symmetry features inherent in homodimers. The presented algorithm could be also used for scoring protein homodimers models in docking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vakser, I.A.: Protein-protein docking: from interaction to interactome. Biophys. J. 107, 1785–1793 (2014). https://doi.org/10.1016/j.bpj.2014.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mukherjee, S., Zhang, Y.: Protein-protein complex structure predictions by multimeric threading and template recombination. Structure 19, 955–966 (2011). https://doi.org/10.1016/j.str.2011.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu, L., Lu, H., Skolnick, J.: MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 49, 350–364 (2002). https://doi.org/10.1002/prot.10222

    Article  CAS  PubMed  Google Scholar 

  4. Baspinar, A., Cukuroglu, E., Nussinov, R., Keskin, O., Gursoy, A.: PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res. 42, W285–W289 (2014). https://doi.org/10.1093/nar/gku397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Källberg, M., et al.: Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012). https://doi.org/10.1038/nprot.2012.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sinha, R., Kundrotas, P.J., Vakser, I.A.: Docking by structural similarity at protein-protein interfaces. Proteins Struct. Funct. Bioinforma. 78, 3235–3241 (2010). https://doi.org/10.1002/prot.22812

    Article  CAS  Google Scholar 

  7. Kundrotas, P.J., Zhu, Z., Janin, J., Vakser, I.A.: Templates are available to model nearly all complexes of structurally characterized proteins. Proc. Natl. Acad. Sci. U. S. A 109, 9438–9441 (2012). https://doi.org/10.1073/pnas.1200678109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Negroni, J., Mosca, R., Aloy, P.: Assessing the applicability of template-based protein docking in the twilight zone. Structure 22, 1356–1362 (2014). https://doi.org/10.1016/j.str.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  9. Vakser, I.A.: Low-resolution structural modeling of protein interactome. Curr. Opin. Struct. Biol. 23, 198–205 (2013). https://doi.org/10.1016/j.sbi.2012.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pierce, B.G., Hourai, Y., Weng, Z.: Accelerating protein docking in ZDOCK using an advanced 3D convolution library. 6, e24657 (2011). https://doi.org/10.1371/journal.pone.0024657

  11. Pierce, B., Weng, Z.: ZRANK: reranking protein docking predictions with an optimized energy function. Proteins Struct. Funct. Genet. 67, 1078–1086 (2007). https://doi.org/10.1002/prot.21373

    Article  CAS  PubMed  Google Scholar 

  12. Zacharias, M.: Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci. 12, 1271–1282 (2003). https://doi.org/10.1110/ps.0239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gabb, H.A., Jackson, R.M., Sternberg, M.J.E.: Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272, 106–120 (1997). https://doi.org/10.1006/jmbi.1997.1203

    Article  CAS  PubMed  Google Scholar 

  14. Neveu, E., Ritchie, D.W., Popov, P., Grudinin, S.: PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation. Bioinformatics 32, i693–i701 (2016). https://doi.org/10.1093/bioinformatics/btw443

    Article  CAS  PubMed  Google Scholar 

  15. Kastritis, P.L., Bonvin, A.M.J.J.: Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. J. Proteome Res. 9, 2216–2225 (2010). https://doi.org/10.1021/pr9009854

    Article  CAS  PubMed  Google Scholar 

  16. Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein-docking algorithm. Proteins Struct. Funct. Genet. 52, 80–87 (2003). https://doi.org/10.1002/prot.10389

    Article  CAS  PubMed  Google Scholar 

  17. Senior, A.W., et al.: Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020). https://doi.org/10.1038/s41586-019-1923-7

    Article  CAS  PubMed  Google Scholar 

  18. Billings, W.M., Hedelius, B., Millecam, T., Wingate, D., Corte, D.D.: ProSPr: democratized implementation of alphafold protein distance prediction network. bioRxiv. 830273 (2019). https://doi.org/10.1101/830273

  19. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., Moult, J.: Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins Struct. Funct. Bioinforma. 87, 1011–1020 (2019). https://doi.org/10.1002/prot.25823

    Article  CAS  Google Scholar 

  20. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  21. Balci, A.T., Gumeli, C., Hakouz, A., Yuret, D., Keskin, O., Gursoy, A.: DeepInterface: protein-protein interface validation using 3D Convolutional Neural Networks. bioRxiv. 617506 (2019). https://doi.org/10.1101/617506

  22. Derevyanko, G., Lamoureux, G.: Protein-protein docking using learned three-dimensional representations. bioRxiv. 738690 (2019). https://doi.org/10.1101/738690

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7298965

  24. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings. International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

  25. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, pp. 3141–3149 (2018)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

  27. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

    Article  PubMed  Google Scholar 

  28. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

  29. Berman, H.M.: The protein data bank: a historical perspective. Acta Crystallogr. Sect. A: Found. Crystallogr. 64, 88–95 (2008). https://doi.org/10.1107/S0108767307035623

    Article  CAS  Google Scholar 

  30. Mitternacht, S.: FreeSASA: an open source C library for solvent accessible surface area calculations. F1000Research. 5, 189 (2016). https://doi.org/10.12688/f1000research.7931.1

  31. Janin, J., Bahadur, R.P., Chakrabarti, P.: Protein-protein interaction and quaternary structure. Q. Rev. Biophys. 41, 133–180 (2008). https://doi.org/10.1017/S0033583508004708

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Hadarovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hadarovich, A., Kalinouski, A., Tuzikov, A.V. (2020). Deep Learning Approach with Rotate-Shift Invariant Input to Predict Protein Homodimer Structure. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics