Skip to main content

Offline Witness Encryption with Semi-adaptive Security

  • Conference paper
  • First Online:
Book cover Applied Cryptography and Network Security (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12146))

Included in the following conference series:

Abstract

The first construction of Witness Encryption (WE) by Garg et al. (STOC 2013) has led to many exciting avenues of research in the past years. A particularly interesting variant is Offline WE (OWE) by Abusalah et al. (ACNS 2016), as the encryption algorithm uses neither obfuscation nor multilinear maps.

Current OWE schemes provide only selective security. That is, the adversary must commit to their challenge messages \(m_{0}\) and \(m_{1}\) before seeing the public parameters. We provide a new, generic framework to construct OWE, which achieves adaptive security in the sense that the adversary may choose their challenge messages adaptively. We call this semi-adaptive security, because – as in prior work – the instance of the considered NP language that is used to create the challenge ciphertext must be fixed before the parameters are generated in the security proof. We show that our framework gives the first OWE scheme with constant ciphertext overhead even for messages of polynomially-bounded size. We achieve this by introducing a new variant of puncturable encryption defined by Green and Miers (S&P 2015) and combining it with the iO-based approach of Abusalah et al. Finally, we show that our framework can be easily extended to construct the first Extractable Offline Witness Encryption (EOWE), by using extractability obfuscation of Boyle et al. (TCC 2014) in place of iO, opening up even more possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 285–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_16

    Chapter  Google Scholar 

  2. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_7

    Chapter  Google Scholar 

  3. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear maps from obfuscation. Cryptology ePrint Archive, Report 2015/780 (2015). http://eprint.iacr.org/2015/780

  4. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 446–473. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_19

    Chapter  Google Scholar 

  5. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_17

    Chapter  Google Scholar 

  6. Anderson, R.: Two remarks on public key cryptography. Technical report 549, University of Cambridge Computer Laboratory (1997). https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-549.pdf

  7. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_10

    Chapter  MATH  Google Scholar 

  8. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_27

    Chapter  Google Scholar 

  9. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  10. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (2012). https://doi.org/10.1145/2160158.2160159

  11. Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric password-based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 308–331. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_14

    Chapter  Google Scholar 

  12. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

    Chapter  Google Scholar 

  13. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3

    Chapter  Google Scholar 

  14. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryptology ePrint Archive, Report 2002/080 (2002). http://eprint.iacr.org/2002/080

  15. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. In: Topics in Algebraic and Noncommutative Geometry (Luminy/Annapolis, MD, 2001), Contemporary Mathematics, vol. 324, pp. 71–90. American Mathematical Socity, Providence (2003). http://dx.doi.org/10.1090/conm/324/05731

  16. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_3

    Chapter  Google Scholar 

  17. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  18. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_2

    Chapter  Google Scholar 

  19. Chvojka, P., Jager, T., Kakvi, S.A.: Offline witness encryption with semi-adaptive security. Cryptology ePrint Archive, Report 2019/1337 (2019). https://eprint.iacr.org/2019/1337

  20. Derler, D., Gellert, K., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications to efficient forward-secret 0-RTT key exchange. Cryptology ePrint Archive, Report 2018/199 (2018). https://eprint.iacr.org/2018/199

  21. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications to efficient Forward-Secret 0-RTT Key Exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_14

    Chapter  Google Scholar 

  22. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable aguments of knowledge. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_6

    Chapter  Google Scholar 

  23. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes from obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 371–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_13

    Chapter  Google Scholar 

  24. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. Cryptology ePrint Archive, Report 2012/610 (2012). http://eprint.iacr.org/2012/610

  25. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1

    Chapter  Google Scholar 

  26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual Symposium on Foundations of Computer Science, 26–29 October 2013, pp. 40–49. IEEE Computer Society Press, Berkeley (2013)

    Google Scholar 

  27. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing, 1–4 June 2013, pp. 467–476. ACM Press, Palo Alto (2013)

    Google Scholar 

  28. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to runturing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30

    Chapter  Google Scholar 

  29. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_4

    Chapter  Google Scholar 

  30. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_17

    Chapter  Google Scholar 

  31. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable encryption. In: 2015 IEEE Symposium on Security and Privacy, 17–21 May 2015, pp. 305–320. IEEE Computer Society Press, San Jose (2015)

    Google Scholar 

  32. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  33. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_18

    Chapter  Google Scholar 

  34. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_34

    Chapter  Google Scholar 

  35. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_30

    Chapter  Google Scholar 

  36. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 254–273. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_14

    Chapter  Google Scholar 

  37. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized functionalities in the private-key setting from minimal assumptions. J. Cryptol. 31(1), 60–100 (2018)

    Article  MathSciNet  Google Scholar 

  38. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption. Des. Codes Crypt. 86(11), 2549–2586 (2018). https://doi.org/10.1007/s10623-018-0461-x

    Article  MathSciNet  MATH  Google Scholar 

  39. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing, 14–16 May 1990, pp. 427–437. ACM Press, Baltimore (1990)

    Google Scholar 

  40. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_8

    Chapter  Google Scholar 

  41. Paneth, O., Sahai, A.: On the equivalence of obfuscation and multilinear maps. Cryptology ePrint Archive, Report 2015/791 (2015). http://eprint.iacr.org/2015/791

  42. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_16

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for ACNS 2020. We would also like to thank Hamza Abusalah, for pointing us to additional relevant literature. The authors were funded by the German Federal Ministry of Education and Research (BMBF) project REZEIVER. Part of this work was completed while the authors were employed at Paderborn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Chvojka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chvojka, P., Jager, T., Kakvi, S.A. (2020). Offline Witness Encryption with Semi-adaptive Security. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds) Applied Cryptography and Network Security. ACNS 2020. Lecture Notes in Computer Science(), vol 12146. Springer, Cham. https://doi.org/10.1007/978-3-030-57808-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57808-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57807-7

  • Online ISBN: 978-3-030-57808-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics