Skip to main content

Abstract

Local Positioning Systems are an active topic of research in the field of autonomous navigation. Its application in difficult complex scenarios has meant a solution to provide stability and accuracy for high-demanded applications. In this paper, we propose a methodology to enhance Local Positioning Systems performance in sensor failure contexts. This fact guarantees system availability in adverse conditions. For this purpose, we apply a Genetic Algorithm Optimization in a five-sensor 3D TDOA architecture in order to optimize the sensor deployment in nominal and adverse operating conditions. We look for a trade-off between accuracy and algorithm convergence in the position determination in four (failure conditions) and five sensor distributions. Results show that the optimization with failure consideration outperforms the non-failure optimization in a 47% in accuracy and triples the convergence radius size in failure conditions, with a penalty of only 6% in accuracy during normal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shen, H., Ding, S., Dasgupta, S., Zhao, C.: Multiple source localization in wireless sensor networks based on time of arrival measurement. IEEE Trans. Signal Process. 62(8), 1938–1949 (2014)

    Article  MathSciNet  Google Scholar 

  2. Yiu, S., Dashti, M., Claussen, H., Perez-Cruz, F.: Wireless RSSI fingerprinting localization. Sig. Process. 131, 235–244 (2017)

    Article  Google Scholar 

  3. Lindgren, D., Hendeby, G., Gustafsson, F.: Distributed localization using acoustic Doppler. Sig. Process. 107, 43–53 (2015)

    Article  Google Scholar 

  4. Rong, P., Sichitiu, M.L.: Angle of arrival localization for wireless sensor networks. In: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, pp. 374–382 (2006)

    Google Scholar 

  5. Sackenreuter, B., Hadaschik, N., Faßbinder, M., Mutschler, C.: Low-complexity PDoA-based localization. In: Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Spain, pp. 1–6 (2016)

    Google Scholar 

  6. Yin, J., Wan, Q., Yang, S., Ho, K.C.: A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Process. Lett. 23(1), 144–148 (2016)

    Article  Google Scholar 

  7. Shen, J., Molisch, A.F., Salmi, J.: Accurate passive location estimation using TOA measurements. IEEE Trans. Wireless Commun. 11(6), 2182–2192 (2012)

    Article  Google Scholar 

  8. Lanxin, L., So, H.C., Frankie, K.W., Chan, K.W., Chan, Y.T., Ho, K.C.: A new constrained weighted least squares algorithm for TDOA-based localization. Sig. Process. 93(11), 2872–2878 (2013)

    Article  Google Scholar 

  9. He, S., Dong, X.: High-accuracy localization platform using asynchronous time difference of arrival technology. IEEE Trans. Instrum. Meas. 66(7), 1728–1742 (2017)

    Article  Google Scholar 

  10. Priyantha, N.B., Balakrishnan, H., Demaine, E.D., Teller, S.: Mobile-assisted localization in wireless sensor networks. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, pp. 172–183. IEEE (2005)

    Google Scholar 

  11. Díez-González, J., Álvarez, R., Sánchez-González, L., Fernández-Robles, L., Pérez, H., Castejón-Limas, M.: 3D TDOA problem solution with four receiving nodes. Sensors 19(13), 2892 (2019)

    Article  Google Scholar 

  12. Yang, K., Xu, Z.: A quadratic constraint total least-squares algorithm for hyperbolic location. Int. J. Commun. Netw. System Sci. 2, 130–135 (2008)

    Google Scholar 

  13. Lanzisera, S., Zats, D., Pister, K.S.J.: Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sens. J. 11, 837–845 (2011)

    Article  Google Scholar 

  14. Kaune, R., Hörst, J., Koch, W.: Accuracy analysis for TDOA localization in sensor networks. In: Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA (2011)

    Google Scholar 

  15. Rappaport, T.S.: Wireless Communications-Principles and Practice. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  16. Álvarez, R., Díez-González, J., Alonso, E., Fernández-Robles, L., Castejón-Limas, M., Perez, H.: Accuracy analysis in sensor networks for asynchronous positioning methods. Sensors 19(13), 3024 (2019)

    Article  Google Scholar 

  17. Díez-González, J., Álvarez, R., González-Bárcena, D., Sánchez-González, L., Castejón-Limas, M., Perez, H.: Genetic algorithm approach to the 3D node localization in TDOA systems. Sensors 19(18), 3880 (2019)

    Article  Google Scholar 

  18. Peng, B., Li, L.: An improved localization algorithm based on genetic algorithm in wireless sensor networks. Cogn. Neurodyn. 9(2), 249–256 (2015)

    Article  Google Scholar 

  19. Domingo-Perez, F., Lazaro-Galilea, J.L., Wieser, A., Martin-Gorostiza, E., Salido-Monzu, D., de la Llana, A.: Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization. Expert Syst. Appl. 47, 95–105 (2016)

    Article  Google Scholar 

  20. Zhang, Q., Wang, J., Jin, C., Ye, J., Ma, C., Zhang, W.: Genetic algorithm based wireless sensor network localization. In: Proceedings of the Fourth International Conference on Natural Computation, Jinan, China (2008)

    Google Scholar 

  21. Ruz, M.L., Garrido, J., Jiménez, J., Virrankoski, R., Vázquez, F.: Simulation tool for the analysis of cooperative localization algorithms for wireless sensor networks. Sensors 19(13), 2866 (2019)

    Article  Google Scholar 

  22. Kowalski, M., Willett, P., Fair, T., Bar-Shalom, Y.: CRLB for estimating time-varying rotational biases in passive sensors. IEEE Trans. Aerosp. Electron. Syst. 56(1), 343–355 (2019)

    Article  Google Scholar 

  23. Hu, D., Chen, S., Bai, H., Zhao, C., Luo, L.: CRLB for joint estimation of TDOA, phase, FDOA, and Doppler rate. J. Eng. 21, 7628–7631 (2019)

    Google Scholar 

  24. Álvarez, R., Díez-González, J., Sánchez-González, L., Perez, H.: Combined noise and clock CRLB error model for the optimization of node location in time positioning systems. IEEE Access 8(1), 31910–31919 (2020)

    Article  Google Scholar 

  25. Álvarez, R., Díez-González, J., Strisciuglio, N., Perez, H.: Multi-objective optimization for asynchronous positioning systems based on a complete characterization of ranging errors in 3D complex environments. IEEE Access 8(1), 43046–43056 (2020)

    Article  Google Scholar 

  26. Yaro, A.S., Sha’ameri, A.Z.: Effect of path loss propagation model on the position estimation accuracy of a 3-dimensional minimum configuration multilateration system. Int. J. Integr. Eng. 10(4), 35–42 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Díez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díez-González, J., Álvarez, R., Verde, P., Ferrero-Guillén, R., González-Bárcena, D., Pérez, H. (2021). Stable Performance Under Sensor Failure of Local Positioning Systems. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_48

Download citation

Publish with us

Policies and ethics