Skip to main content

Abstract

Air Quality Index (AQI) is an index to inform the daily air quality. AQI is a dimensionless quantity to show the state of air pollution simplifying the information of concentrations in \(\mu g/m^3\). Air quality indexes have been established for each of the five pollutants located in an interesting area to study in as Algeciras (Spain). Hourly data of air pollutants, available during 2010–2015, were analysed for the development of the proposed AQI. This work proposes a two-step forecasting approach to obtain future values, eight hours ahead, of AQI using Machine Learning methods. ANN, SVR and LSTM are capable of modelling non-linear time series and can be trained to accurately generalize when a new database is presented.

Supported by MICINN (Ministerio de Ciencia e Innovación-Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azid, A., Juahir, H., Latif, M.T., Zain, S.M., Osman, M.R.: Feed-forward artificial neural network model for air pollutant index prediction in the southern region of Peninsular Malaysia. J. Environ. Prot. 04(12), 1–10 (2013)

    Article  Google Scholar 

  2. Bruno, F., Cocchi, D.: Recovering information from synthetic air quality indices. Environmetrics 18(3), 345–359 (2007)

    Article  MathSciNet  Google Scholar 

  3. van den Elshout, S.: CiteairII. CAQI Air quality index. Comparing urban air quality across borders-2012 (October 2008), pp. 1–38 (2012)

    Google Scholar 

  4. European Environment Agency: Air quality in Europe — 2018 Report. Technical Report European Environment Agency, Copenhagen, Denmark (2018)

    Google Scholar 

  5. González-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Franco, L.: Spatial and meteorological relevance in \(NO_2\) estimations: a case study in the Bay of Algeciras (Spain). Stoch. Environ. Res. Risk Assess. 33(3), 801–815 (2019)

    Article  Google Scholar 

  6. Gonzalez-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-Lopez, J.A., Jerez-Aragones, J., Franco, L.: Estimation of NO2 concentration values in a monitoring sensor network using a fusion approach. Fresenius Environ. Bull. 28(2), 681–686 (2019)

    Google Scholar 

  7. Güçlü, Y.S., Dabanlı, Şişman, E., Şen, Z.: Air quality (AQ) identification by innovative trend diagram and AQ index combinations in Istanbul megacity. Atmos. Pollut. Res. 10(1), 88–96 (2019)

    Google Scholar 

  8. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. Thomson Learning Stamford, CT (1996)

    Google Scholar 

  9. Hakimpoor, H., Arshad, K.A.B., Tat, H.H., Khani, N., Rahmandoust, M.: Artificial neural networks’ applications in management. World Appl. Sci. J. 14(7), 1008–1019 (2011)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  12. Jiang, D., Zhang, Y., Hu, X., Zeng, Y., Tan, J., Shao, D.: Progress in developing an ANN model for air pollution index forecast. Atmos. Environ. 38(40 SPEC.ISS.), 7055–7064 (2004)

    Google Scholar 

  13. Kyrkilis, G., Chaloulakou, A., Kassomenos, P.A.: Development of an aggregate air quality index for an urban Mediterranean agglomeration: relation to potential health effects. Environ. Int. 33(5), 670–676 (2007)

    Article  Google Scholar 

  14. Lauret, P., Heymes, F., Aprin, L., Johannet, A.: Atmospheric dispersion modeling using artificial neural network based cellular automata. Environ. Modell. Softw. 85, 56–69 (2016)

    Article  Google Scholar 

  15. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23(22), 22408–22417 (2016)

    Article  Google Scholar 

  16. Mayer, H., Kalberlah, F., Ahrens, D., Reuter, U.: Analysis of indices for the assessment of the air. Gefahrstoffe Reinhaltung der Luft 62, 177–183 (2002)

    Google Scholar 

  17. Mayer, H., Makra, L., Kalberlah, F., Ahrens, D., Reuter, U.: Air stress and air quality indices. Meteorol. Z. 13(5), 395–403 (2004)

    Article  Google Scholar 

  18. Mihăiţă, A.S., Dupont, L., Chery, O., Camargo, M., Cai, C.: Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling. J. Clean. Prod. 221, 398–418 (2019)

    Article  Google Scholar 

  19. Murena, F.: Measuring air quality over large urban areas: development and application of an air pollution index at the urban area of Naples. Atmos. Environ. 38(36), 6195–6202 (2004)

    Article  Google Scholar 

  20. lal Benjamin, N., et al.: Air quality prediction using artificial neural network. Int. Chem. Stud. 2(4), 7–9 (2014)

    Google Scholar 

  21. Palangi, H., Ward, R., Deng, L.: Distributed compressive sensing: a deep learning approach. IEEE Trans. Signal Process. 64(17), 4504–4518 (2016)

    Article  MathSciNet  Google Scholar 

  22. Plaia, A., Ruggieri, M.: Air quality indices: a review. Rev. Environ. Sci. Biotechnol. 10(2), 165–179 (2011)

    Article  Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Parallel distributed processing: Exploration in the Mi-crostructure of Cognition, pp. 318–362 (1986)

    Google Scholar 

  24. U.S. Environmental Protection Agency: Guidelines for the Reporting of Daily Air Quality – the Air Quality Index (AQI). Technical Report, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina (2006)

    Google Scholar 

  25. Van Fan, Y., Perry, S., Klemeš, J.J., Lee, C.T.: A review on air emissions assessment: transportation. J. Clean. Prod. 194, 673–684 (2018)

    Article  Google Scholar 

  26. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  27. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)

    Article  Google Scholar 

  28. Yang, G., Huang, J., Li, X.: Mining sequential patterns of PM2.5 pollution in three zones in china. J. Clean. Prod. 170, 388 – 398 (2018)

    Google Scholar 

  29. Zhou, Y., Chang, F.J., Chang, L.C., Kao, I.F., Wang, Y.S.: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 209, 134–145 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the research project RTI2018-098160-B-I00 supported by MICINN (Ministerio de Ciencia e Innovación-Spain). The database has been kindly provided by the Environmental Agency of the Andalusian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Antonio Moscoso-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moscoso-López, J.A., Urda, D., González-Enrique, J., Ruiz-Aguilar, J.J., Turias, I.J. (2021). Hourly Air Quality Index (AQI) Forecasting Using Machine Learning Methods. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_12

Download citation

Publish with us

Policies and ethics