Abstract
Air Quality Index (AQI) is an index to inform the daily air quality. AQI is a dimensionless quantity to show the state of air pollution simplifying the information of concentrations in \(\mu g/m^3\). Air quality indexes have been established for each of the five pollutants located in an interesting area to study in as Algeciras (Spain). Hourly data of air pollutants, available during 2010–2015, were analysed for the development of the proposed AQI. This work proposes a two-step forecasting approach to obtain future values, eight hours ahead, of AQI using Machine Learning methods. ANN, SVR and LSTM are capable of modelling non-linear time series and can be trained to accurately generalize when a new database is presented.
Supported by MICINN (Ministerio de Ciencia e Innovación-Spain).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azid, A., Juahir, H., Latif, M.T., Zain, S.M., Osman, M.R.: Feed-forward artificial neural network model for air pollutant index prediction in the southern region of Peninsular Malaysia. J. Environ. Prot. 04(12), 1–10 (2013)
Bruno, F., Cocchi, D.: Recovering information from synthetic air quality indices. Environmetrics 18(3), 345–359 (2007)
van den Elshout, S.: CiteairII. CAQI Air quality index. Comparing urban air quality across borders-2012 (October 2008), pp. 1–38 (2012)
European Environment Agency: Air quality in Europe — 2018 Report. Technical Report European Environment Agency, Copenhagen, Denmark (2018)
González-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Franco, L.: Spatial and meteorological relevance in \(NO_2\) estimations: a case study in the Bay of Algeciras (Spain). Stoch. Environ. Res. Risk Assess. 33(3), 801–815 (2019)
Gonzalez-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-Lopez, J.A., Jerez-Aragones, J., Franco, L.: Estimation of NO2 concentration values in a monitoring sensor network using a fusion approach. Fresenius Environ. Bull. 28(2), 681–686 (2019)
Güçlü, Y.S., Dabanlı, Şişman, E., Şen, Z.: Air quality (AQ) identification by innovative trend diagram and AQ index combinations in Istanbul megacity. Atmos. Pollut. Res. 10(1), 88–96 (2019)
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. Thomson Learning Stamford, CT (1996)
Hakimpoor, H., Arshad, K.A.B., Tat, H.H., Khani, N., Rahmandoust, M.: Artificial neural networks’ applications in management. World Appl. Sci. J. 14(7), 1008–1019 (2011)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)
Jiang, D., Zhang, Y., Hu, X., Zeng, Y., Tan, J., Shao, D.: Progress in developing an ANN model for air pollution index forecast. Atmos. Environ. 38(40 SPEC.ISS.), 7055–7064 (2004)
Kyrkilis, G., Chaloulakou, A., Kassomenos, P.A.: Development of an aggregate air quality index for an urban Mediterranean agglomeration: relation to potential health effects. Environ. Int. 33(5), 670–676 (2007)
Lauret, P., Heymes, F., Aprin, L., Johannet, A.: Atmospheric dispersion modeling using artificial neural network based cellular automata. Environ. Modell. Softw. 85, 56–69 (2016)
Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23(22), 22408–22417 (2016)
Mayer, H., Kalberlah, F., Ahrens, D., Reuter, U.: Analysis of indices for the assessment of the air. Gefahrstoffe Reinhaltung der Luft 62, 177–183 (2002)
Mayer, H., Makra, L., Kalberlah, F., Ahrens, D., Reuter, U.: Air stress and air quality indices. Meteorol. Z. 13(5), 395–403 (2004)
Mihăiţă, A.S., Dupont, L., Chery, O., Camargo, M., Cai, C.: Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling. J. Clean. Prod. 221, 398–418 (2019)
Murena, F.: Measuring air quality over large urban areas: development and application of an air pollution index at the urban area of Naples. Atmos. Environ. 38(36), 6195–6202 (2004)
lal Benjamin, N., et al.: Air quality prediction using artificial neural network. Int. Chem. Stud. 2(4), 7–9 (2014)
Palangi, H., Ward, R., Deng, L.: Distributed compressive sensing: a deep learning approach. IEEE Trans. Signal Process. 64(17), 4504–4518 (2016)
Plaia, A., Ruggieri, M.: Air quality indices: a review. Rev. Environ. Sci. Biotechnol. 10(2), 165–179 (2011)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Parallel distributed processing: Exploration in the Mi-crostructure of Cognition, pp. 318–362 (1986)
U.S. Environmental Protection Agency: Guidelines for the Reporting of Daily Air Quality – the Air Quality Index (AQI). Technical Report, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina (2006)
Van Fan, Y., Perry, S., Klemeš, J.J., Lee, C.T.: A review on air emissions assessment: transportation. J. Clean. Prod. 194, 673–684 (2018)
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)
Yang, G., Huang, J., Li, X.: Mining sequential patterns of PM2.5 pollution in three zones in china. J. Clean. Prod. 170, 388 – 398 (2018)
Zhou, Y., Chang, F.J., Chang, L.C., Kao, I.F., Wang, Y.S.: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 209, 134–145 (2019)
Acknowledgments
This work is part of the research project RTI2018-098160-B-I00 supported by MICINN (Ministerio de Ciencia e Innovación-Spain). The database has been kindly provided by the Environmental Agency of the Andalusian.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Moscoso-López, J.A., Urda, D., González-Enrique, J., Ruiz-Aguilar, J.J., Turias, I.J. (2021). Hourly Air Quality Index (AQI) Forecasting Using Machine Learning Methods. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-57802-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57801-5
Online ISBN: 978-3-030-57802-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)