Skip to main content

Inverse Problems of Single Molecule Localization Microscopy

  • 354 Accesses

Abstract

Single molecule localization microscopy is a recently developed superresolution imaging technique to visualize structural properties of single cells. The basic principle consists in chemically attaching fluorescent dyes to the molecules, which after excitation with a strong laser may emit light. To achieve superresolution, signals of individual fluorophores are separated in time. In this paper we follow the physical and chemical literature and derive mathematical models describing the propagation of light emitted from dyes in single molecule localization microscopy experiments via Maxwell’s equations. This forms the basis of formulating inverse problems related to single molecule localization microscopy. We also show that the current status of reconstruction methods is a simplification of more general inverse problems for Maxwell’s equations as discussed here.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-57784-1_12
  • Chapter length: 54 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-57784-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9(1), 413–468 (1873)

    CrossRef  Google Scholar 

  2. P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, A. Radenovic, Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One 6(7), e22678 (2011)

    Google Scholar 

  3. D. Axelrod, Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study. J. Microsc. 247(2), 147–160 (2012)

    CrossRef  Google Scholar 

  4. F. Balzarotti, Y. Eilers, K.C. Gwosch, A.H. Gynnå, V. Westphal, F.D. Stefani, J. Elf, S.W. Hell, Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355(6325), 606–612 (2017)

    CrossRef  Google Scholar 

  5. F. Baumgart, A.M. Arnold, B.K. Rossboth, M. Brameshuber, G.J. Schutz, What we talk about when we talk about nanoclusters. Methods Appl. Fluores. 7(1), 013001 (2019)

    Google Scholar 

  6. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)

    CrossRef  Google Scholar 

  7. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University, Cambridge, 1999)

    CrossRef  Google Scholar 

  8. F. Cakoni, D. Colton, A Qualitative Approach to Inverse Scattering Theory (Springer, New York, 2014)

    CrossRef  Google Scholar 

  9. B.J. Davis, A.K. Swan, M.S. Ünlü, W.C. Karl, B.B. Goldberg, J.C. Schotland, P.S. Carney, Spectral self-interference microscopy for low-signal nanoscale axial imaging. J. Opt. Soc. Am. A 24(11), 3587–3599 (2007)

    CrossRef  Google Scholar 

  10. H. Deschout, F.C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S.T. Hess, K. Braeckmans, Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Meth. 11(3), 253–266 (2014)

    CrossRef  Google Scholar 

  11. P. Elbau, L. Mindrinos, O. Scherzer, Mathematical methods of optical coherence tomography, in Handbook of Mathematical Methods in Imaging, ed. by O. Scherzer (Springer, New York, 2015), pp. 1169–1204

    CrossRef  Google Scholar 

  12. G.W. Ford, W.H. Weber, Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113(4), 195–287 (1984)

    CrossRef  Google Scholar 

  13. A.C. Gilbert, H.W. Levinson, J.C. Schotland, Imaging from the inside out: inverse scattering with photoactivated internal sources. Opt. Lett. 43(12), 3005–3008 (2018)

    CrossRef  Google Scholar 

  14. J.W. Goodman, Introduction to Fourier Optics (Roberts, New York, 2005)

    Google Scholar 

  15. G. Grubb, Distributions and operators, in Graduate Texts in Mathematics (Springer, New York, 2009)

    Google Scholar 

  16. M.G.L. Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Nat. Acad. Sci. USA 102(37), 13081–13086 (2005)

    CrossRef  Google Scholar 

  17. E.H. Hellen, D. Axelrod, Fluorescence emission at dielectric and metal-film interfaces. J. Opt. Soc. Am. B 4(3), 337–350 (1987)

    CrossRef  Google Scholar 

  18. M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Nat. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005)

    CrossRef  Google Scholar 

  19. L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd edn. (Springer, Berlin, 2003)

    CrossRef  Google Scholar 

  20. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    MATH  Google Scholar 

  21. R. Jungmann, C. Steinhauer, M. Scheible, A. Kuzyk, P. Tinnefeld, F.C. Simmel, Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10(11), 4756–4761 (2010)

    CrossRef  Google Scholar 

  22. G. Kabachinski, T.U. Schwartz, The nuclear pore complex—structure and function at a glance. J. Cell Sci. 128(3), 423–429 (2015)

    CrossRef  Google Scholar 

  23. T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Nat. Acad. Sci. USA 97(15), 8206–8210 (2000)

    CrossRef  Google Scholar 

  24. T.A. Klar, E. Engel, S.W. Hell, Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64(6), 066613 (2001)

    Google Scholar 

  25. M. Levitus, S. Ranjit, Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Quart. Rev. Biophys. 44(1), 123–151 (2011)

    CrossRef  Google Scholar 

  26. H.L. Li, J.C. Vaughan, Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 118(18), 9412–9454 (2018)

    CrossRef  Google Scholar 

  27. I. Orlov, et al.: The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol. Cell 109(2), 81–93 (2017)

    CrossRef  Google Scholar 

  28. A.S. Rose, A.R. Bradley, Y. Valasatava, J.M. Duarte, A. Prlic, P.W. Rose, Ngl viewer: web-based molecular graphics for large complexes. Bioinformatics 34(21), 3755–3758 (2018)

    CrossRef  Google Scholar 

  29. M.J. Rust, M. Bates, X.W. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat. Meth. 3(10), 793–795 (2006)

    CrossRef  Google Scholar 

  30. D. Sage, et al., Super-resolution fight club: assessment of 2d and 3d single-molecule localization microscopy software. Nat. Methods 16(5), 387–395 (2019)

    CrossRef  Google Scholar 

  31. Y.G. Shi, A glimpse of structural biology through x-ray crystallography. Cell 159(5), 995–1014 (2014)

    CrossRef  Google Scholar 

  32. C.S. Smith, N. Joseph, B. Rieger, K.A. Lidke, Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Meth. 7(5), 373–375 (2010)

    CrossRef  Google Scholar 

  33. C.-T. Tai., Dyadic Green’s Functions in Electromagnetic Theory (IEEE, New York, 1971)

    Google Scholar 

  34. A. von Appen, J. Kosinski, L. Sparks, et al., In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143 (2015)

    CrossRef  Google Scholar 

  35. V. Westphal, S.W. Hell, Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94(14), 143903 (2005)

    Google Scholar 

Download references

Acknowledgements

OS is supported by the Austrian Science Fund (FWF), within SFB F68 (Tomography across the scales), project F6807-N36 (Tomography with Uncertainties) and I3661-N27 (Novel Error Measures and Source Conditions of Regularization Methods for Inverse Problems). KS is supported by the Austrian Science Fund (FWF), project P31053-N32 (Weighted X-ray transform and applications). MLM, MS and GS are also supported by the SFB F68, project F6809-N36 (Ultra-high Resolution Microscopy). JS is supported in part by the NSF grant DMS-1912821 and the AFOSR grant FA9550-19-1-0320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Sadiq .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Derivation of Particular Fourier Transforms

Before reading through the appendix it might be useful to recall the notation of Table 2. The derivation in Lemma 3 uses the residual theorem.

Table 2 Some abbreviation used in Lemma 3 and its proof, as well as in Appendix 1 and 2

Theorem 2 (Residual Theorem)

Let the function \(z \in \mathbb {C} \to \tilde {f}(z):=f(z) \mathrm e^{\mathrm i a z}\) with a > 0 satisfy the following properties:

  1. 1.

    f is analytic with at most finitely many poles p i , i = 1, …, m, which do not lie on the real axis.

  2. 2.

    There exists M, R > 0 such that for every \(z \in \mathbb {C}\) satisfying ℑ(z) ≥ 0 and \(\left | z\right | \geq R\)

    $$\displaystyle \begin{aligned} \left| f(z)\right| \leq \frac{M}{\left| z\right| }. \end{aligned} $$
    (108)

Then

$$\displaystyle \begin{aligned} \int_{\mathbb{R}} \tilde{f}(x) dx = 2 \pi \mathrm i \sum_{i=1}^m \mathit{\text{Res}}(\tilde{f};p_i). \end{aligned}$$

Using this lemma we are able to prove the following result used in Lemma 3:

Lemma 10

Let the assumptions and notation of Lemma 3 hold (in particular this means that \(r_3, r_3^{\boldsymbol {\Psi }} \in \mathbb {R}\) satisfy \(r_3-r_3^{\boldsymbol {\Psi }} > 0\) ), then

$$\displaystyle \begin{aligned} \begin{array}{rcl} {} & \frac{1}{\sqrt{2\pi}} \mathcal{F}_3^{-1} \left[k_3 \to \left(\boldsymbol{\Psi} + \frac{(\boldsymbol{\Psi} \times \mathbf{k}) \times \mathbf{k}}{\left| \mathbf{ k}\right|{}^2 - \kappa_\varepsilon^2} \right)\mathrm e^{-\mathrm i k_3 r_3^{\boldsymbol{\Psi}}}\right](r_3)\\ & = \Psi_3 {\mathbf{e}}_3\tilde \delta(r_3 - r_3^{\boldsymbol{\Psi}}) + \frac{\mathrm i \mathrm e^{\mathrm i q_{\varepsilon} (r_3-r_3^{\boldsymbol{\Psi}})}}{ 2q_{\varepsilon} } (\boldsymbol{\Psi} \times \mathbf{ k}_{q_{\varepsilon}}) \times {\mathbf{k}}_{q_{\varepsilon}}. \end{array} \end{aligned} $$
(109)

First, we note that

$$\displaystyle \begin{aligned} \boldsymbol{\Psi} + \frac{(\boldsymbol{\Psi} \times \mathbf{k}) \times \mathbf{k}}{k_3^2 - q_{\varepsilon}^2} = \left(\boldsymbol{\Psi} - \Psi_3 {\mathbf{e}}_3 + \frac{(\boldsymbol{\Psi} \times \mathbf{k}) \times \mathbf{k}}{ k_3^2 - q_{\varepsilon}^2} \right) + \Psi_3 {\mathbf{e}}_3. \end{aligned}$$

Now, we calculate the Fourier-transform of each of the two terms on the right-hand side. The second term can be calculated from Eq. (9) and is given by

$$\displaystyle \begin{aligned} \mathcal F^{-1}_3[k_3 \mapsto \mathrm e^{-\mathrm i k_3 r_3^{\boldsymbol{\Psi}}}](r_3) &= \sqrt{2\pi} \tilde \delta(r_3 - r_3^{\boldsymbol{\Psi}}) {}. \end{aligned} $$
(110)

For the calculation of the first term, let

$$\displaystyle \begin{aligned} z \in \mathbb{C} \to f(z):= \frac{1}{z^2 - q_{\varepsilon}^2} \left( {\boldsymbol{\Psi}} \times \begin{pmatrix}k_1\\k_2\\z \end{pmatrix} \right) \times \begin{pmatrix}k_1\\k_2\\z \end{pmatrix} + {\boldsymbol{\Psi}} - \Psi_3 {\mathbf{e}}_3, \end{aligned} $$
(111)

and we use the residual theorem:

  • Clearly f is analytic with potential poles at k 3 = ±q ε.

  • To verify Eq. (108) we use the elementary calculation rules for ∇r×, summarized in Eq. (45) and get

    $$\displaystyle \begin{aligned} ~ & \frac{(\boldsymbol{\Psi} \times \mathbf{k}) \times \mathbf{k}}{ k_3^2 - q_{\varepsilon}^2} =-\frac{1}{ k_3^2 - q_{\varepsilon}^2} \\ &\left(\!\!k_3^2 (\boldsymbol{\Psi} - \Psi_3 {\mathbf{e}}_3) - k_3 \begin{pmatrix} \Psi_3 k_1 \\ \Psi_3 k_2 \\ \Psi_1 k_1 {+} \Psi_2 k_2\end{pmatrix} {+} (k_1^2+k_2^2) \boldsymbol{\Psi} {-} \begin{pmatrix} (\!\Psi_1 k_1 + \Psi_2 k_2)k_1 \\ (\Psi_1 k_1 + \Psi_2 k_2)k_2 \\0 \end{pmatrix} \!\!\right) \\ = &-\frac{1}{k_3^2 - q_{\varepsilon}^2} \left(\!k_3^2 \left( \boldsymbol{\Psi} - \Psi_3 {\mathbf{e}}_3\right) - k_3 \begin{pmatrix} \Psi_3 k_1 \\ \Psi_3 k_2 \\ \Psi_1 k_1 + \Psi_2 k_2\end{pmatrix} \right.\\ &\left. + (k_1^2+k_2^2) \left( \boldsymbol{\Psi} - \Psi_3 {\mathbf{e}}_3\right) + \begin{pmatrix} -\Psi_1 k_1^2 - \Psi_2 k_2k_1 \\ -\Psi_2 k_2^2 - \Psi_1 k_1k_2 \\(k_1^2+k_2^2) \Psi_3 \end{pmatrix} \!\! \right) \\ = &-\frac{1}{ k_3^2 - q_{\varepsilon}^2} \left((k_3^2-q_{\varepsilon}^2) \left( \boldsymbol{\Psi} - \Psi_3 {\mathbf{e}}_3\right) - k_3 \begin{pmatrix} \Psi_3 k_1 \\ \Psi_3 k_2 \\ \Psi_1 k_1 + \Psi_2 k_2\end{pmatrix} + \kappa^2 \left( \boldsymbol{\Psi} - \Psi_3 {\mathbf{e}}_3\right)\right.\\ &\left. + \begin{pmatrix} -\Psi_1 k_1^2 - \Psi_2 k_2k_1 \\ -\Psi_2 k_2^2 - \Psi_1 k_1k_2 \\(k_1^2+k_2^2) \Psi_3 \end{pmatrix} \right) = - \boldsymbol{\Psi} + \Psi_3 {\mathbf{e}}_3 + \frac{k_3}{k_3^2 - q_{\varepsilon}^2} \mathbf{a} - \frac{1}{k_3^2 - q_{\varepsilon}^2} \mathbf{b} \end{aligned} $$

    where

    $$\displaystyle \begin{aligned} \mathbf{a} = \begin{pmatrix} \Psi_3 k_1 \\ \Psi_3 k_2 \\ \Psi_1 k_1 + \Psi_2 k_2\end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} (\kappa^2 - k_1^2) \Psi_1 -\Psi_2 k_1 k_2 \\ (\kappa^2 - k_2^2) \Psi_2 - \Psi_1 k_1 k_2 \\ (k_1^2 + k_2^2)\Psi_3 \end{pmatrix}. \end{aligned}$$

    Using that

    $$\displaystyle \begin{aligned} \frac{k_3}{k_3^2-q_{\varepsilon}^2} = \frac{1}{2} \left(\! \frac{1}{k_3-q_{\varepsilon}} + \frac{1}{k_3+q_{\varepsilon}} \!\right) \text{ and } \frac{1}{k_3^2-q_{\varepsilon}^2} = \frac{1}{2q_{\varepsilon}} \left( \frac{1}{k_3-q_{\varepsilon}} - \frac{1}{k_3+q_{\varepsilon}} \right) \end{aligned}$$

    we get

    $$\displaystyle \begin{aligned} \frac{(\boldsymbol{\Psi} \times \mathbf{k}) \times \mathbf{k}}{ k_3^2 - q_{\varepsilon}^2} + \boldsymbol{\Psi} - \Psi_3 {\mathbf{e}}_3 = \frac{1}{k_3-q_{\varepsilon}} \left( \frac{1}{2} \mathbf{a} - \frac{1}{2q_{\varepsilon}} \mathbf{b} \right) + \frac{1}{k_3+q_{\varepsilon}} \left( \frac{1}{2}\mathbf{a} + \frac{1}{2q_{\varepsilon}} \mathbf{b} \right). \end{aligned} $$
    (112)

    This shows Eq. (108).

Therefore we can apply the residual Theorem 2 for f defined in (111). Then, since q ε is complex with positive imaginary part, f has only one pole in the upper half plane, and we get

$$\displaystyle \begin{aligned} \int_{\mathbb{R}} f(k_3) \mathrm e^{\mathrm i k_3 (r_3 - r_3^{\boldsymbol{\Psi}})} d k_3 &= 2 \pi \mathrm i \text{Res} \left(f(z) \mathrm e^{\mathrm i z (r_3 - r_3^{\boldsymbol{\Psi}})}; z=q_{\varepsilon}\right) \\ &= 2 \pi \mathrm i \left( \frac{1}{2q_{\varepsilon}} \left( {\boldsymbol{\Psi}} \times \begin{pmatrix}k_1\\k_2\\q_{\varepsilon} \end{pmatrix} \right) \times \begin{pmatrix}k_1\\k_2\\q_{\varepsilon} \end{pmatrix} \mathrm e^{\mathrm i q_{\varepsilon} (r_3 - r_3^{\boldsymbol{\Psi}})} \right). \end{aligned}$$

This implies

$$\displaystyle \begin{aligned} &\frac{1}{\sqrt{2\pi}} \mathcal{F}_3^{-1} \left[k_3 \to \left(\boldsymbol{\Psi} + \frac{(\boldsymbol{\Psi} \times \mathbf{k}) \times \mathbf{k}}{\left| \mathbf{ k}\right|{}^2 - \kappa_\varepsilon^2} \right)\mathrm e^{-\mathrm i k_3 r_3^{\boldsymbol{\Psi}}}\right](r_3)\\ & = \Psi_3 {\mathbf{e}}_3\tilde \delta(r_3 - r_3^{\boldsymbol{\Psi}}) + \frac{\mathrm i \mathrm e^{\mathrm i q_{\varepsilon} (r_3-r_3^{\boldsymbol{\Psi}})}}{ 2q_{\varepsilon} } (\boldsymbol{\Psi} \times \mathbf{ k}_{q_{\varepsilon}}) \times {\mathbf{k}}_{q_{\varepsilon}}. \end{aligned}$$

Appendix 2: Derivation of the Far Field Approximation for the Electric Field

Lemma 11

Let ζ be the function defined in Eq.(61). That is, for all \({\mathbf {k}}_{12} \in \mathbb {R}^2\) ζ(k 12) = k 12 ⋅v + q(k 12), with \(q = \sqrt {\kappa ^2 - k_1^2 - k_2^2}\) ; note the formal definition of q in Eq.(42) is via the limit ε → 0. Then the gradient of ζ is given by

$$\displaystyle \begin{aligned} \nabla \zeta ({\mathbf{k}}_{12}) = \mathbf{v}- \frac{{\mathbf{k}}_{12}}{\sqrt{\kappa^2 - \left| \mathbf{ k}_{12}\right|{}^2}}, \end{aligned} $$
(113)

which vanishes for

$$\displaystyle \begin{aligned} \hat{\mathbf{k}}_{12} := \frac{\kappa}{\sqrt{1+\left| \mathbf{v}\right|{}^2}}\mathbf{v}. \end{aligned} $$
(114)

Consequently r = r 3 e 3+r 3 ( v1 ) T as in Eq.(59) satisfies

$$\displaystyle \begin{aligned} \frac{\mathbf{r}}{\left| \mathbf{r}\right| } = \frac{1}{\sqrt{1+\left| \mathbf{v}\right|{}^2}} \begin{pmatrix} \mathbf{v}\\ 1 \end{pmatrix}. \end{aligned} $$
(115)

Moreover, with q as defined in Eq.(42), we get the following identities

$$\displaystyle \begin{aligned} & \zeta(\hat{\mathbf{k}}) = \hat{\mathbf{k}}_{12} \cdot \mathbf{v} + q =\kappa \sqrt{1+\left| \mathbf{v}\right|{}^2} \quad \mathit{\text{ and }}\\ & q = q(\hat{\mathbf{k}}) = \sqrt{ \kappa^2 - \hat{k}_1^2-\hat{k}_2^2} = \frac{\kappa}{\sqrt{1+\left| \mathbf{ v}\right|{}^2}}. \end{aligned} $$
(116)

The Hessian of ζ is given by

$$\displaystyle \begin{aligned} H(\zeta)({\mathbf{k}}_{12}) = \begin{pmatrix} - \frac{1}{\sqrt{\kappa^2 - \left| {\mathbf{k}}_{12}\right|{}^2}} - \frac{k_1^2}{(\kappa^2 - \left| {\mathbf{k}}_{12}\right|{}^2)^{3/2}} & - \frac{k_1 k_2}{(\kappa^2 - \left| {\mathbf{k}}_{12}\right|{}^2)^{3/2}} \\- \frac{k_1 k_2}{(\kappa^2 - \left| {\mathbf{k}}_{12}\right|{}^2)^{3/2}} & - \frac{1}{\sqrt{\kappa^2 - \left| {\mathbf{k}}_{12}\right|{}^2}} - \frac{k_2^2}{(\kappa^2 - \left| {\mathbf{k}}_{12}\right|{}^2)^{3/2}} \end{pmatrix}, \end{aligned}$$

which evaluated at \(\hat {\mathbf {k}}\) gives

$$\displaystyle \begin{aligned} &H(\zeta)(\hat{\mathbf{k}}) = \\ &\begin{pmatrix} - \frac{c}{\omega}\sqrt{1+\left| \mathbf{v}\right|{}^2} - \frac{ c^3}{\omega^3 }(1+\left| \mathbf{v}\right|{}^2)^{3/2} \cdot \frac{v_1^2 \omega^2}{c^2 (1+ \left| \mathbf{v}\right|{}^2)} &- \frac{ c^3}{\omega^3 }(1+\left| \mathbf{v}\right|{}^2)^{3/2} \cdot \frac{v_1v_2 \omega^2}{c^2 (1+ \left| \mathbf{v}\right|{}^2)} \\ - \frac{ c^3}{\omega^3 }(1+\left| \mathbf{v}\right|{}^2)^{3/2} \cdot \frac{v_1v_2 \omega^2}{c^2 (1+ \left| \mathbf{ v}\right|{}^2)} & - \frac{c}{\omega}\sqrt{1+\left| \mathbf{v}\right|{}^2} - \frac{ c^3}{\omega^3 }(1+\left| \mathbf{v}\right|{}^2)^{3/2} \cdot \frac{v_2^2 \omega^2}{c^2 (1+ \left| \mathbf{v}\right|{}^2)} \end{pmatrix}, \\ & = - \frac{c}{\omega} \sqrt{1+\left| \mathbf{v}\right|{}^2} \begin{pmatrix} 1 + v_1^2 & v_1 v_2 \\v_1 v_2 & 1+v_2^2 \end{pmatrix}, \end{aligned} $$

and the determinant satisfies

$$\displaystyle \begin{aligned} = \frac{c^2(1+\left| \mathbf{v}\right|{}^2)^2}{\omega^2} > 0. \end{aligned}$$

Appendix 3: Bessel Identities

For \(x \in \mathbb {R}\) and φ 0 ∈ [0, 2π) the Bessel-identities hold:

$$\displaystyle \begin{aligned} 2 \pi (-1)^m \mathrm i^m J_m(x) \cos (m \varphi_0) &= \int_{0}^{2 \pi} \mathrm e^{-\mathrm i x \cos (\varphi - \varphi_0)} \cos (m \varphi) d \varphi, \\ 2 \pi (-1)^m \mathrm i^m J_m(x) \sin (m \varphi_0) &= \int_{0}^{2 \pi} \mathrm e^{-\mathrm i x \cos (\varphi - \varphi_0)} \sin (m \varphi) d \varphi, \end{aligned} $$
(117)

where J m is the Bessel function of the first kind of order m.

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lopez-Martinez, M. et al. (2021). Inverse Problems of Single Molecule Localization Microscopy. In: Kaltenbacher, B., Schuster, T., Wald, A. (eds) Time-dependent Problems in Imaging and Parameter Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-57784-1_12

Download citation