Skip to main content

CGVis: A Visualization-Based Learning Platform for Computational Geometry Algorithms

  • Conference paper
  • First Online:
Addressing Global Challenges and Quality Education (EC-TEL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12315))

Included in the following conference series:

  • 2241 Accesses

Abstract

Computational Geometry is a field of study whose full comprehension by students requires a combination of mathematical, algorithmic and application-oriented approaches. Due to the inherently visual nature of geometrical problems as well as to the complexity of related algorithms in terms of data structures and concepts employed, algorithm visualization can provide significant added value to the learning process, by helping shorten the cognitive distance gap between concept and visualization. In this paper, we describe CGVis, a visualization-based interactive educational platform for Computational Geometry algorithms. The paper explains the major design decisions adopted and describes the platform’s main features and functionality in detail. The platform has been evaluated in real-world settings by capturing postgraduate students’ response and feedback regarding usefulness, usability and user experience, as well as by measuring the platform’s educational effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radošević, D., Orehovački, T., Lovrenčić, A.: Verificator: educational tool for learning programming. Inform. Educ. 8(2), 261–280 (2009)

    Article  Google Scholar 

  2. Rößling, G., Naps, T.: A testbed for pedagogical requirements in algorithm visualizations. In: ITiCSE 2002, Proceedings of the 7th Annual Conference on Innovation and Technology in Computer Science Education, pp. 96–100 (2002)

    Google Scholar 

  3. Hundhausen, C., Douglas, S., Stasko, J.: A meta-study of algorithm visualization effectiveness. J. Visual Lang. Comput. 13(3), 259–290 (2002)

    Article  Google Scholar 

  4. Baecker, R.: With the assistance of Dave Sherman, “Sorting out Sorting”, 30 minute color sound film. Dynamic Graphics Project, University of Toronto (1981)

    Google Scholar 

  5. Brown, M., Sedgewick, R.: A system for algorithm animation. Comput. Graph. 18(3), 177–186 (1984)

    Article  Google Scholar 

  6. Brown, M.: Exploring algorithms using BALSA-II. Computer 21(5), 14–36 (1988)

    Article  Google Scholar 

  7. Karavirta, V., Korhonen, A., Malmi, L., Stalnacke, K.: MatrixPro - a tool for on-the-fly demonstration of data structures and algorithms. In: Proceedings of the Third Program Visualization Workshop, pp. 26–33 (2004)

    Google Scholar 

  8. Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppalla, O., Silvast, P.: Visual algorithm simulation exercise system with automatic assessment: TRAKLA2. Inform. Educ. 3(2), 267–288 (2004)

    Article  Google Scholar 

  9. Naps, T.: JHAVÉ: supporting algorithm visualization. IEEE Comput. Graphics Appl. 25(5), 49–55 (2005)

    Article  Google Scholar 

  10. Panas, T., Lincke, R., Löwe, W.: Online-configuration of software visualizations with Vizz3D. In: Proceeding SoftVis 2005 Proceedings of the 2005 ACM Symposium on Software Visualization, pp. 173–182 (2005)

    Google Scholar 

  11. Rajala, T., Laakso, M., Kaila, E., Salakoski, T.: Effectiveness of program visualization: a case study with the ViLLE Tool. J. Inf. Tech. Ed. Inn. Pr. 7, 15–32 (2008)

    Google Scholar 

  12. Foutsitzis, C., Demetriadis, S.: AlCoLab: architecture of algorithm visualization system. In: Eighth IEEE International Conference on Advanced Learning Technologies (2008)

    Google Scholar 

  13. Wei, J., Tsai, M., Lee, G., Huang, J., Lee, D.: GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing. IEEE Trans. Visual Comput. Graphics 15(2), 234–248 (2009)

    Article  Google Scholar 

  14. Velazquez-Iturbide, J., Debdi, O., Esteban-Sanchez, N., Pizarro, C.: GreedEx: a visualization tool for experimentation and discovery learning of greedy algorithms. IEEE Trans. Learn. Technol. 6(2), 130–143 (2013)

    Article  Google Scholar 

  15. Shoufan, A., Lu, Z., Huss, S.: A web-based visualization and animation platform for digital logic design. IEEE Trans. Learn. Technol. 8(2), 225–239 (2015)

    Article  Google Scholar 

  16. Shaffer, C.A., et al.: Algorithm visualization: the state of the field. ACM Trans. Comput. Educ. 10, 1–22 (2010)

    Article  Google Scholar 

  17. Schorn, P.: An object-oriented workbench for experimental geometric computation. In: Proceedings of the 2nd Canadian Conference on Computational Geometry (CCCG), pp. 172–175 (1990)

    Google Scholar 

  18. Rezende, P., Jacometti, W.: Animation of geometric algorithms using GeoLab. In: Proceedings of the 9th Annual ACM Symposium on Computational Geometry (SoCG), pp. 401–402 (1993)

    Google Scholar 

  19. Epstein, P., Kavanagh, J., Knight, A., May, J., Nguyen, T., Sack, J.-R.: A workbench for computational geometry. Algorithmica 11(4), 404–428 (1994). https://doi.org/10.1007/BF01187021

    Article  MathSciNet  MATH  Google Scholar 

  20. Tal, A., Dobkin, D.: Visualization of geometric algorithms. IEEE Trans. Visual Comput. Graphics 1(2), 194–204 (1995)

    Article  Google Scholar 

  21. Kürten, S., Mulzer, W.: LiveCG: an interactive visualization environment for computational geometry. In: SOCG 2014 13th Annual Symposium on Computational Geometry (2014)

    Google Scholar 

  22. Unity Game Engine. http://unity3d.com

  23. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, New York (1985)

    Google Scholar 

  24. Bloom, B., Englehart, M., Furst, E., Hill, W., Krathwohl, D.: Taxonomy of educational objectives: the classification of educational goals. In: Handbook I: Cognitive Domain. Longmans, Green, New York, Toronto (1956)

    Google Scholar 

  25. Krathwohl, D.: A revision of Bloom’s taxonomy: an overview. Theory Pract. 41(4), 212–218 (2002)

    Article  Google Scholar 

  26. Karavirta, V., Shaffer, C.: Creating engaging online learning material with the JSAV JavaScript algorithm visualization library. IEEE TLT 9(2), 171–183 (2016)

    Google Scholar 

  27. Pierson, W., Rodger, S.: Web-based animation of data structures using JAWAA. SIGCSE Bull. 30(1), 267–271 (1998)

    Article  Google Scholar 

  28. Processing. https://processing.org/

  29. Sommerville, I.: Software Engineering, 8th edn. Pearson Education, London (2007)

    MATH  Google Scholar 

  30. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods, pp. 25–62. Wiley, New York (1994)

    Google Scholar 

  31. Wharton, C., Rieman, J., Lewisand, C., Polson, P.: The cognitive walkthrough: a practitioner’s guide. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods, pp. 63–76. Wiley, New York (1994)

    Google Scholar 

  32. Debdi, O., Paredes-Velasco, M., Velázquez-Iturbide, J.: GreedExCol, a CSCL tool for experimenting with greedy algorithms. Comp. Appl. Eng. 23, 790–804 (2015)

    Article  Google Scholar 

  33. Voulodimos, A., Kosmopoulos, D., Veres, G., Grabner, H., Van Gool, L., Varvarigou, T.: Online classification of visual tasks for industrial workflow monitoring. Neural Netw. 24(8), 852–860 (2011)

    Article  Google Scholar 

  34. Doulamis, N., Voulodimos, A., Kosmopoulos, D., Varvarigou, T.: Enhanced human behavior recognition using HMM and evaluative rectification. In: Proceedings of the First ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams (ARTEMIS 2010), Florence, Italy, pp. 39–44, October 2010. https://doi.org/10.1145/1877868.1877880

  35. Baloukas, T.: JAVENGA: JAva-based Visualization Environment for Network and Graph Algorithms. Comp. Appl. Eng. 20, 255–268 (2012)

    Article  Google Scholar 

  36. Protopapadakis, E., et al.: Dance pose identification from motion capture data: a comparison of classifiers. Technologies 6, 31 (2018). https://doi.org/10.3390/technologies6010031

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Voulodimos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voulodimos, A., Karagiannopoulos, P., Drosouli, I., Miaoulis, G. (2020). CGVis: A Visualization-Based Learning Platform for Computational Geometry Algorithms. In: Alario-Hoyos, C., Rodríguez-Triana, M.J., Scheffel, M., Arnedillo-Sánchez, I., Dennerlein, S.M. (eds) Addressing Global Challenges and Quality Education. EC-TEL 2020. Lecture Notes in Computer Science(), vol 12315. Springer, Cham. https://doi.org/10.1007/978-3-030-57717-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57717-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57716-2

  • Online ISBN: 978-3-030-57717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics