Skip to main content

New Measures for Offline Evaluation of Learning Path Recommenders

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12315)

Abstract

Recommending students useful and effective learning paths is highly valuable to improve their learning experience. The evaluation of the effectiveness of this recommendation is a challenging task that can be performed online or offline. Online evaluation is highly popular but it relies on actual path recommendations to students, which may have dramatic implications. Offline evaluation relies on static datasets of students’ learning activities and simulates paths recommendations. Although easier to run, it is difficult to accurately evaluate offline the effectiveness of a learning path recommendation. To tackle this issue, this work proposes simple offline evaluation measures. We show that they actually allow to characterise and differentiate the algorithms.

Keywords

  • Learning path recommendation
  • Offline evaluation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Durand, G., Laplante, F., Kop, R.: A learning design recommendation system based on Markov decision processes. In: 17th ACM KDD (2011)

    Google Scholar 

  2. Durand, G., Belacel, N., LaPlante, F.: Graph theory based model for learning path recommendation. Inf. Sci. 251, 10–21 (2013)

    CrossRef  Google Scholar 

  3. Dwivedi, P., Kant, V., Bharadwaj, K.: Learning path recommendation based on modified variable length genetic algorithm. Educ. Inf. Technol. 23(2), 819–836 (2018)

    CrossRef  Google Scholar 

  4. Embretson, S.E., Reise, S.P.: Item Response Theory. Psychology Press, New York (2013)

    CrossRef  Google Scholar 

  5. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking metric embedding for next new POI recommendation. In: 24th IJCAI (2015)

    Google Scholar 

  6. Hsieh, T., Wang, T.: A mining-based approach on discovering courses pattern for constructing suitable learning path. Expert Syst. Appl. 37(6), 4156–4167 (2010)

    CrossRef  Google Scholar 

  7. Léonard, M., Peter, Y., Secq, Y.: Patterns and loops: early computational thinking. In: Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A., Schneider, J. (eds.) EC-TEL 2019. LNCS, vol. 11722, pp. 280–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29736-7_21

    CrossRef  Google Scholar 

  8. Liu, Q., et al.: Exploiting cognitive structure for adaptive learning. In: Proceedings of the 25th KDD, pp. 627–635 (2019)

    Google Scholar 

  9. Monti, D., Palumbo, E., Rizzo, G., Morisio, M.: Sequeval: an offline evaluation framework for sequence-based RS. Information 10(5), 174 (2019)

    CrossRef  Google Scholar 

  10. Nabizadeh, A., Gonçalves, D., Gama, S., Jorge, J., Rafsanjani, H.: Adaptive learning path recommender approach using auxiliary learning objects. Comput. Educ. 147 (2020)

    Google Scholar 

  11. Nabizadeh, A., Jorge, A., Leal, J.: Estimating time and score uncertainty in generating successful learning paths under time constraints. Expert Syst. 36(2), e12351 (2019)

    CrossRef  Google Scholar 

  12. Nabizadeh, A., Jorge, A., Leal, J.P.: Long term goal oriented recommender systems. In: Proceedings of the 11th WEBIST, pp. 552–557 (2015)

    Google Scholar 

  13. Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems. ACM Comput. Surv. (CSUR) 51(4), 1–36 (2018)

    CrossRef  Google Scholar 

  14. Rossetti, M., Stella, F., Zanker, M.: Contrasting offline and online results when evaluating recommendation algorithms. In: Proceedings of the 10th RecSys, pp. 31–34 (2016)

    Google Scholar 

  15. Su, C.: Designing and developing a novel hybrid adaptive learning path recommendation system (ALPRS) for gamification mathematics geometry course. Eurasia J. Math. Sci. Technol. Educ. 13(6), 2275–2298 (2017)

    CrossRef  Google Scholar 

  16. Su, J., Tseng, S., Wang, W., Weng, J., Yang, J., Tsai, W.: Learning portfolio analysis and mining for SCORM compliant environment. J. Educ. Technol. Soc. 9(1), 262–275 (2006)

    Google Scholar 

  17. Taraghi, B., Saranti, A., Ebner, M., Schön, M.: Markov chain and classification of difficulty levels enhances the learning path in one digit multiplication. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2014. LNCS, vol. 8523, pp. 322–333. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07482-5_31

    CrossRef  Google Scholar 

  18. Venant, R., Sharma, K., Vidal, P., Dillenbourg, P., Broisin, J.: Using sequential pattern mining to explore learners’ behaviors and evaluate their correlation with performance in inquiry-based learning. In: Lavoué, É., Drachsler, H., Verbert, K., Broisin, J., Pérez-Sanagustín, M. (eds.) EC-TEL 2017. LNCS, vol. 10474, pp. 286–299. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66610-5_21

    CrossRef  Google Scholar 

  19. Vesin, B., Klašnja-Milićević, A., Ivanović, M., Budimac, Z.: Applying recommender systems and adaptive hypermedia for e-learning personalization. Comput. Inform. 32(3), 629–659 (2013)

    Google Scholar 

  20. Xie, H., Zou, D., Wang, F.L., Wong, T.L., Rao, Y., Wang, S.H.: Discover learning path for group users: a profile-based approach. Neurocomputing 254, 59–70 (2017)

    CrossRef  Google Scholar 

  21. Zhou, Y., Huang, C., Hu, Q., Zhu, J., Tang, Y.: Personalized learning full-path recommendation model based on LSTM neural networks. Inf. Sci. 444, 135–152 (2018)

    CrossRef  Google Scholar 

  22. Zhu, H., et al.: A multi-constraint learning path recommendation algorithm based on knowledge map. Knowl.-Based Syst. 143, 102–114 (2018)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armelle Brun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Brun, A., Boyer, A. (2020). New Measures for Offline Evaluation of Learning Path Recommenders. In: Alario-Hoyos, C., Rodríguez-Triana, M.J., Scheffel, M., Arnedillo-Sánchez, I., Dennerlein, S.M. (eds) Addressing Global Challenges and Quality Education. EC-TEL 2020. Lecture Notes in Computer Science(), vol 12315. Springer, Cham. https://doi.org/10.1007/978-3-030-57717-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57717-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57716-2

  • Online ISBN: 978-3-030-57717-9

  • eBook Packages: Computer ScienceComputer Science (R0)