Skip to main content

Forest Ecosystems: A Functional and Biodiversity Perspective

  • Chapter
  • First Online:
Perspectives for Biodiversity and Ecosystems

Part of the book series: Environmental Challenges and Solutions ((ECAS))

Abstract

This chapter provides an introduction to the biodiversity of forest ecosystems and highlights the currently acting drivers of forest biodiversity loss. Recent findings on relationships between biodiversity patterns and ecosystem functions are summarized, including the functional consequences of biodiversity loss for the stable provision of forest ecosystem services. Finally, implications for the protection and management of forest ecosystems as important means for biodiversity conservation and climate change mitigation are addressed.

Forest ecosystems host a huge proportion of the Earth’s terrestrial biodiversity and play a crucial role in global biogeochemical cycles. However, dramatic losses of forest area currently constitute an important driver of global biodiversity loss, with unprecedented consequences for the functioning of forest ecosystems and the services they provide. This applies to tropical rain forests in particular, which are estimated to support about two-thirds of the global biodiversity, despite covering less than 15% of the world’s land surface. For the years 1990–2005, the net loss of natural tropical forest area was estimated to 135 million hectares. As a consequence of losses of forest area, more than 5000 tree species from 180 countries are currently threatened with extinction. Declining forest area and associated biodiversity loss in turn will feedback on important functions of forest ecosystems. Declining forest area (in the decade 2003–2012) generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change. Primary producer diversity, for example of tree species, enhances forest productivity due to resource partitioning, facilitation, natural enemy partitioning or selection effects. As a consequence, maintaining tree diversity is an important prerequisite for both the long-term preservation of ecosystem functioning and the provision of ecosystem services such as timber production or climate change mitigation. It is assumed that a 10% decline of tree species richness will result in a 2–3% reduction of forest productivity at the global scale. The monetary value of tree species richness in maintaining commercial forest productivity is estimated to amount to $166 to $490 billion per year, highlighting the functional importance of forest biodiversity and the need for safeguarding forest biodiversity for human well-being.

Besides the establishment of extensive protected forest areas (wilderness areas) across forest biomes, forest management is considered an important tool for the preservation of biodiversity and ecosystem functioning, as key attributes for forest species conservation and ecological processes critically depend on management intensity. Therefore, sustainable forest management strategies (i.e. ecosystem-based approaches) across forest biomes are required that (1) avoid deforestation and land-use changes, (2) approach key attributes of ‘natural forest communities’ (e.g. biome-specific tree species composition and diversity), (3) allow for and maximize the natural dynamics typical of the respective forest ecosystems, and (4) prioritize the minimization of silvicultural interventions over the maximization of forest timber exploitation, thus optimizing biodiversity protection and forest ecosystem functioning (including ecosystem resistance and resilience against global change). Moreover, we highlight the importance of ecological continuity for safeguarding forest biodiversity and its functional role in mediating the response of forest ecosystems to multiple environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services – a global review. Geoderma 262:101–111

    Article  CAS  Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37

    Article  CAS  Google Scholar 

  • Agren GI, Franklin O (2003) Root: shoot ratios, optimization and nitrogen productivity. Ann Bot 92:795–800

    Article  CAS  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA et al (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  Google Scholar 

  • Alkama R, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604

    Article  CAS  Google Scholar 

  • Alroy J (2017) Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci U S A 114:6056–6061

    Article  CAS  Google Scholar 

  • Ammer C (2019) Diversity and forest productivity in a changing climate. New Phytol 221:50–66

    Article  Google Scholar 

  • Anderegg WR, Konings AG, Trugman AT et al (2018) Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561:538–541

    Article  CAS  Google Scholar 

  • Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Korner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509–1519

    Article  CAS  Google Scholar 

  • Baeten L, Bruelheide H, van der Plas F et al (2019) Identifying the tree species compositions that maximize ecosystem functioning in European forests. J Appl Ecol 56:733–744

    Article  Google Scholar 

  • Barber CV, Miller KR, Boness M (2004) Securing protected areas in the face of global change. Issues and Strategies. IUCN, Gland, 234 pp

    Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  Google Scholar 

  • Barry KE, Mommer L, van Ruijven J et al (2019) The future of complementarity: disentangling causes from consequences. Trends Ecol Evol 34:167–180

    Article  Google Scholar 

  • Barthlott W, Hostert A, Kier G et al (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315

    Article  Google Scholar 

  • Basset Y, Cizek L, Cuenoud P, Didham RK et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484

    Article  CAS  Google Scholar 

  • Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537

    Article  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW et al (2010) Architecture of the wood-wide web: rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553

    Article  CAS  Google Scholar 

  • Benito Garzon M, Sanchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178

    Article  Google Scholar 

  • Bergès L, Dupouey JL (2020) Historical ecology and ancient forests: progress, conservation issues and scientific prospects, with some examples from the French case. J Veg Sci. https://doi.org/10.1111/jvs.12846

  • Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  Google Scholar 

  • Brancalion PHS, Niamir A, Broadbent E et al (2019) Global restoration opportunities in tropical rainforest landscapes. Sci Adv 5:eaav3223

    Article  Google Scholar 

  • Brunet J, von Oheimb G (1998) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:429–438

    Article  Google Scholar 

  • Brunet J, Fritz Ö, Richnau G (2010) Biodiversity in European beech forests – a review with recommendations for sustainable forest management. Ecol Bull 53:77–94

    Google Scholar 

  • Butchart SHM, Walpole M, Collen M et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  Google Scholar 

  • Cameron EK, Martins IS, Lavelle P et al (2019) Global mismatches in aboveground and belowground biodiversity. Conserv Biol 33(5):1187–1192

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:305–307

    Article  CAS  Google Scholar 

  • Ceballos G, Ehrlich PR (2018) The misunderstood sixth mass extinction. Science 360:1080–1168

    Article  Google Scholar 

  • Chazdon RL, Broadbent EN, Rozendaal DMA et al (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2:e1501639

    Article  CAS  Google Scholar 

  • Chen S, Wang W, Xu W et al (2018) Plant diversity enhances productivity and soil carbon storage. Proc Natl Acad Sci U S A 115:4027–4032

    Article  CAS  Google Scholar 

  • Christensen M, Hahn K, Mountford EP et al (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manag 210:267–282

    Article  Google Scholar 

  • Compton JA, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330

    Article  Google Scholar 

  • De la Peña E, Baeten L, Steel H et al (2016) Beyond plant–soil feedbacks: mechanisms driving plant community shifts due to land-use legacies in post-agricultural forests. Funct Ecol 30:1073–1085

    Article  Google Scholar 

  • De Laender F, Rohr JR, Ashauer R et al (2016) Reintroducing environmental change drivers in biodiversity–ecosystem functioning research. Trends Ecol Evol 31:905–915

    Article  Google Scholar 

  • De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K, Verheyen K (2011) Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob Ecol Biogeogr 20:803–816

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F et al (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci U S A 104:20684–20689

    Article  Google Scholar 

  • Erb KH, Kastner T, Plutzar C et al (2018) Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76

    Article  CAS  Google Scholar 

  • Fähser L (2012) Factoring non-knowledge into natural resource management: the Luebeck concept of nature-oriented forestry. In: Ibisch P, Geiger L, Cybulla F (eds) Global change management: knowledge gaps, blindspots and unknowables. Nomos, Baden-Baden, pp 113–130

    Chapter  Google Scholar 

  • FAO - Food and Agriculture Organisation of the United Nations (2015) Global forest resources assessment, Rome, pp 1–253

    Google Scholar 

  • Felipe-Lucia MR, Soliveres S, Penone C et al (2018) Multiple forest attributes underpin the supply of multiple ecosystem services. Nat Commun 9:4839

    Article  CAS  Google Scholar 

  • Fichtner A, Schmid M (2015) Erfassung und Schutz von Habitatstrukturen in der AktivRegion Innere Lübecker Bucht. Abschlussbericht 57 p

    Google Scholar 

  • Fichtner A, von Oheimb G, Härdtle W et al (2014) Effects of anthropogenic disturbances on soil microbial communities in oak forests persist for more than 100 years. Soil Biol Biochem 70:79–87

    Article  CAS  Google Scholar 

  • Fichtner A, Forrester DI, Härdtle W et al (2015) Facilitative-competitive interactions in an old-growth forest: the importance of large-diameter trees as benefactors and stimulators for forest community assembly. PLoS One 10:e0120335

    Article  CAS  Google Scholar 

  • Fichtner A, Härdtle W, Li Y et al (2017) From competition to facilitation: how tree species respond to neighbourhood diversity. Ecol Lett 20:892–900

    Article  Google Scholar 

  • Fichtner A, Härdtle W, Bruelheide H et al (2018) Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat Commun 9:1144

    Article  CAS  Google Scholar 

  • Fichtner A, Schnabel F, Bruelheide H et al (2020) Neighbourhood diversity mitigates drought impacts on tree growth. J Ecol 108:865–875

    Google Scholar 

  • Flensted KK, Bruun HH, Ejrnæs R et al (2016) Red-listed species and forest continuity – a multi-taxon approach to conservation in temperate forests. For Ecol Manag 378:144–159

    Article  Google Scholar 

  • Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Front Ecol Environ 3:243–250

    Article  Google Scholar 

  • Forrester DI, Bauhus J (2016) A review of processes behind diversity-productivity relationships in forests. Curr Forestry Rep 2:45–61

    Article  Google Scholar 

  • Fraterrigo JM, Balser TC, Turner MG (2006) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87:570–579

    Article  Google Scholar 

  • Fritz Ö, Gustafsson L, Larsson K (2008a) Does forest continuity matter in conservation? A study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biol Conserv 141:655–668

    Article  Google Scholar 

  • Fritz Ö, Niklasson M, Churski M (2008b) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231

    Article  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R et al (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340

    Article  CAS  Google Scholar 

  • Garavito NT, Newton AC, Golicher D et al (2015) The relative impact of climate change on the extinction risk of tree species in the montane tropical Andes. PLoS One 10:e0131388

    Article  CAS  Google Scholar 

  • Garcia-Valdes R, Bugmann H, Morin X (2018) Climate change-driven extinctions of tree species affect forest functioning more than random extinctions. Divers Distrib 24:906–918

    Article  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R et al (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582

    Article  Google Scholar 

  • Gentry AH (1988) Tree species richness of the upper Amazonian forests. Proc Natl Acad Sci U S A 85:156–159

    Article  CAS  Google Scholar 

  • George PBL, Lallias D, Creer S et al (2019) Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat Commun 10:1107

    Article  CAS  Google Scholar 

  • Giam XL (2017) Global biodiversity loss from tropical deforestation. Proc Natl Acad Sci U S A 114:5775–5777

    Article  CAS  Google Scholar 

  • Gorzelak MA, Asay AK, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7:plv050

    Article  CAS  Google Scholar 

  • Grace JB, Anderson TM, Seabloom EW et al (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393

    Article  CAS  Google Scholar 

  • Griggs D, Stafford-Smith M, Gaffney O et al (2013) Sustainable development goals for people and planet. Nature 495:65–72

    Article  CAS  Google Scholar 

  • Griscom BW, Adams J, Ellis PW et al (2017) Natural climate solutions. Proc Natl Acad Sci U S A 114:11645–11650

    Article  CAS  Google Scholar 

  • Grossman JJ, Cavender-Bares J, Reich PB et al (2019) Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. J Ecol 107:1492–1505

    Article  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:e0185809

    Article  CAS  Google Scholar 

  • Hamilton AJ, Basset Y, Benke KK et al (2010) Quantifying uncertainty in estimation of tropical arthropod species richness. Am Nat 176:90–95

    Article  Google Scholar 

  • Hartmann M, Niklaus PA, Zimmermann S et al (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 8:226–244

    Article  CAS  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C et al (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  CAS  Google Scholar 

  • Heilmann-Clausen J, Christensen M (2004) Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manag 201:105–117

    Article  Google Scholar 

  • Hess C, Niemeyer T, Fichtner A et al (2018) Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change. Environ Pollut 233:92–98

    Article  CAS  Google Scholar 

  • Hisano M, Searle EB, Chen HJH (2018) Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol Rev 93:439–456

    Article  Google Scholar 

  • Hisano M, Chen HYH, Searle EB, Reich PB (2019) Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol Lett 6:999–1008

    Article  Google Scholar 

  • Huang Y, Chen Y, Castro-Izaguirre N et al (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362:80–83

    Article  CAS  Google Scholar 

  • IPCC - Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Isbell F, Calcagno V, Hector A et al (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202

    Article  CAS  Google Scholar 

  • Isbell F, Gonzalez A, Loreau M et al (2017) Linking the influence and dependence of people on biodiversity across scales. Nature 546:65–72

    Article  CAS  Google Scholar 

  • IUCN - International Union for Nature Conservation (2019) IUCN Spatial Data. http://www.iucnredlist.org/techical-documents/spatial-data

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    Article  Google Scholar 

  • Janssen P, Fuhr M, Cateau E et al (2017) Forest continuity acts congruently with stand maturity in structuring the functional composition of saproxylic beetles. Biol Conserv 205:1–10

    Article  Google Scholar 

  • Janssen P, Bergès L, Fuhr M, Paillet Y (2019) Do not drop OLD for NEW: conservation needs both forest continuity and stand maturity. Front Ecol Environ 7:370–371

    Article  Google Scholar 

  • Jucker T, Bouriaud O, Avacaritei D et al (2014) Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett 17:1560–1569

    Article  Google Scholar 

  • Jucker T, Bouriaud O, Coomes DA (2015) Crown plasticity enables trees to optimize canopy. Funct Ecol 29:1078–1086

    Article  Google Scholar 

  • Kaufmann S, Hauck M, Leuschner C (2018) Effects of natural forest dynamics on vascular plant, bryophyte, and lichen diversity in primeval Fagus sylvatica forests and comparison with production forests. J Ecol 106:2421–2434

    Article  Google Scholar 

  • Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16:618–631

    Article  Google Scholar 

  • Keenan RJ, Reams GA, Achard F et al (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20

    Article  Google Scholar 

  • Klein T, Siegwolf RTW, Körner C (2016) Belowground carbon trade among tall trees in a temperate forest. Science 352:342–344

    Article  CAS  Google Scholar 

  • Korner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C (2017) A matter of tree longevity. Science 355:130–131

    Article  Google Scholar 

  • Krah FS, Seibold S, Brandl R et al (2018) Independent effects of host and environment on the diversity of wood-inhabiting fungi. J Ecol 106:1428–1442

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  Google Scholar 

  • Leuschner C, Wulf M, Bäuchler P et al (2014) Forest continuity as a key determinant of soil carbon and nutrient storage in beech forests on sandy soils in Northern Germany. Ecosystems 17:497–511

    Article  CAS  Google Scholar 

  • Lewis SL, Wheeler CE, Mitchard ET et al (2019) Restoring natural forests is the best way to remove atmospheric carbon. Nature 568:25–28

    Article  CAS  Google Scholar 

  • Liang J, Crowther TW, Picard N et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:6309

    Article  CAS  Google Scholar 

  • Liu X, Trogisch S, He JS et al (2018) Tree species richness increases ecosystem carbon storage in subtropical forests. Proc R Soc B 285:20181240

    Article  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  Google Scholar 

  • Lutz JA, Larson AJ, Freund JA et al (2013) The importance of large-diameter trees to forest structural heterogeneity. PLoS One 8:e82784

    Article  CAS  Google Scholar 

  • Lutz JA, Furniss TJ, Johnson DJ et al (2018) Global importance of large-diameter trees. Glob Ecol Biogeogr 27:849–864

    Article  Google Scholar 

  • Luyssaert S, Schulze ED, Börner A et al (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  Google Scholar 

  • Maes SL, Perring MP, Vanhellemont M et al (2019) Environmental drivers interactively affect individual tree growth across temperate European forests. Glob Chang Biol 25:201–217

    Article  Google Scholar 

  • Mausolf K, Will P, Härdtle W et al (2018a) Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests. Sci Total Environ 642:1201–1208

    Article  CAS  Google Scholar 

  • Mausolf K, Härdtle W, Jansen K et al (2018b) Legacy effects of land-use modulate tree growth responses to climate extremes. Oecologia 187:825–837

    Article  Google Scholar 

  • Maxwell S, Fuller RA, Brooks TM et al (2016) The ravages of guns, nets and bulldozers. Nature 536:143–145

    Article  CAS  Google Scholar 

  • Mazor T, Doropoulos C, Schwarzmueller F, Gladish DW, Kumaran N, Merkel K, Di Marco M, Gagic V (2018) Global mismatch of policy and research on drivers of biodiversity loss. Nat Ecol Evol 2:1071–1074

    Article  Google Scholar 

  • McMullin RT, Wiersma YF (2019) Out with OLD growth, in with ecological continNEWity: New perspectives on forest conservation. Front Ecol Environ 17:176–181

    Article  Google Scholar 

  • MEA - Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Moning C, Muller J (2009) Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol Indic 9:922–932

    Article  Google Scholar 

  • Moning C, Werth S, Dziock F et al (2009) Lichen diversity in temperate montane forests is influenced by forest structure more than climate. For Ecol Manag 258:745–751

    Article  Google Scholar 

  • Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M et al (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett 17:1526–1535

    Article  Google Scholar 

  • Murray DL, Peers MJL, Majchrzak YN et al (2017) Continental divide: Predicting climate-mediated fragmentation and biodiversity loss in the boreal forest. PLoS One 12:e0176706

    Article  CAS  Google Scholar 

  • Musavi T, Migliavacca M, Reichstein M et al (2017) Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat Ecol Evol 1:0048

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Nice CC, Fordyce JA, Bell KL et al (2019) Vertical differentiation in tropical forest butterflies: a novel mechanism generating insect diversity? Biol Lett 15:20180723

    Article  Google Scholar 

  • Nordén B, Dahlberg A, Brandrud TE et al (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience 21:34–45

    Article  Google Scholar 

  • Novotny V, Drozd P, Miller SE et al (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  CAS  Google Scholar 

  • Ohlson M, Söderström L, Hörnberg G et al (1997) Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biol Conserv 81:221–231

    Article  Google Scholar 

  • Paillet Y, Bergès L, Hjältén J et al (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24(24):101–112

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Penone C, Allan E, Soliveres S et al (2019) Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol Lett 22:170–180

    Article  Google Scholar 

  • Perring MP, De Frenne P, Baeten L et al (2016) Global environmental change effects on ecosystems: the importance of land-use legacies. Glob Chang Biol 22:1361–1371

    Article  Google Scholar 

  • Peterken GF (1977) Habitat conservation priorities in British and European woodlands. Biol Conserv 11:223–236

    Article  Google Scholar 

  • Phoenix GK, Emmett BA, Britton AJ et al (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18:1197–1215

    Article  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity - extinction by numbers. Nature 403:843–845

    Article  CAS  Google Scholar 

  • Popkin G (2019) The forest question. Nature 565:280–282

    Article  CAS  Google Scholar 

  • Rackham O (1980) Ancient woodland: its history, vegetation and uses in England. Arnold, London

    Google Scholar 

  • Ratcliffe S, Wirth C, Jucker T et al (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol Lett 20:1414–1426

    Article  Google Scholar 

  • Rejmanek M, Richardson DM (2013) Trees and shrubs as invasive alien species-2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM, Rejmanek M (2011) Trees and shrubs as invasive alien species - a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Schmid B, Niklaus PA (2017) Complementary canopies. Nat Ecol Evol 1:0104

    Article  Google Scholar 

  • Schnabel F, Schwarz JA, Dănescu A et al (2019) Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob Chang Biol 25:4257–4272

    Article  Google Scholar 

  • Scholes RJ, Schulze ED, Pitelka LF, Hall DO (1999) Biogeochemistry of terrestrial ecosystems. In: Walker BH, Steffen WL, Canadell J, Ingram JSI (eds) The terrestrial biosphere and global change: implications for natural and managed ecosystems. Cambridge University Press, Cambridge, pp 88–105

    Google Scholar 

  • Schuldt A, Assmann T, Brezzi M et al (2018) Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat Commun 9:2989

    Article  CAS  Google Scholar 

  • Schuldt A, Ebeling A, Kunz M et al (2019) Multiple plant diversity components drive consumer communities across ecosystems. Nat Commun 10:1460

    Article  CAS  Google Scholar 

  • Schulze ED, Wirth C, Heimann M (2000) Climate change - managing forests after Kyoto. Science 289:2058–2059

    Article  CAS  Google Scholar 

  • Seddon N, Turner B, Berry P et al (2019) Grounding nature-based climate solutions in sound biodiversity science. Nat Clim Chang 9:82–87

    Article  Google Scholar 

  • Seibold S, Brandl R, Buse J et al (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390

    Article  Google Scholar 

  • Sherratt TN, Wilkinson DM (2009) Big questions in ecology and evolution. Oxford University Press, Oxford, 297pp

    Book  Google Scholar 

  • Simard SW, Perry DA, Jones MD et al (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA et al (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Stephenson NL, Das AJ, Condit R et al (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93

    Article  CAS  Google Scholar 

  • Stoll P, Weiner J (2000) A neighborhood view of interactions among individual plants. In: Dieckmand RL, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, pp 11–27

    Chapter  Google Scholar 

  • Stork NE, Boyle TJB, Dale V et al (1997) Criteria and indicators for assessing the sustainability of forest management: conservation of biodiversity. CIFOR Working Paper No. 17. Jakarta, Indonesia, CIFOR

    Google Scholar 

  • Stork NE, McBroom J, Gely C et al (2015) New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc Natl Acad Sci U S A 112:7519–7523

    Article  CAS  Google Scholar 

  • Temperton VM, Buchmann N, Buisson E et al (2019) Step back from the forest and step up to the Bonn challenge: how a broad ecological perspective can promote successful landscape restoration. Restor Ecol 27:705–719

    Google Scholar 

  • Tererai F, Gaertner M, Jacobs SM, Richardson DM (2013) Eucalyptus invasions in riparian forests: effects on native vegetation community diversity, stand structure and composition. For Ecol Manag 297:84–93

    Article  Google Scholar 

  • Tobner CM, Paquette A, Gravel D et al (2016) Functional identity is the main driver of diversity effects in young tree communities. Ecol Lett 19:638–647

    Article  Google Scholar 

  • van der Plas F (2019) Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev 94:1220–1245

    Google Scholar 

  • van der Plas F, Manning P, Allan E et al (2016) Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat Commun 7:11109

    Article  CAS  Google Scholar 

  • van der Plas F, Ratcliffe S, Ruiz-Benito P et al (2018) Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol Lett 21:31–42

    Article  Google Scholar 

  • von Oheimb G, Härdtle W, Naumann PS et al (2008) Long-term effects of historical heathland farming on soil properties of forest ecosystems. For Ecol Manag 255:1984–1993

    Article  Google Scholar 

  • Watson JEM, Evans T, Venter O et al (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2:599–610

    Article  Google Scholar 

  • Williams LJ, Paquette A, Cavender-Bares J et al (2017) Spatial complementarity in tree crowns explains over yielding in species mixtures. Nat Ecol Evol 1:0063

    Article  Google Scholar 

  • Wright AJ, Wardle DA, Callaway R, Gaxiola A (2017) The overlooked role of facilitation in biodiversity experiments. Trends Ecol Evol 32:383–390

    Article  Google Scholar 

  • Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100:742–749

    Article  Google Scholar 

  • Zhang T, Niinemets Ü, Sheffield J et al (2018) Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556:99–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fichtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fichtner, A., Härdtle, W. (2021). Forest Ecosystems: A Functional and Biodiversity Perspective. In: Hobohm, C. (eds) Perspectives for Biodiversity and Ecosystems. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-57710-0_16

Download citation

Publish with us

Policies and ethics