Skip to main content

SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for Heterogeneous Computing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12247))

Abstract

The SYCL standard promises to enable high productivity in heterogeneous programming of a broad range of parallel devices, including multicore CPUs, GPUs, and FPGAs. Its modern and expressive C++ API design, as well as flexible task graph execution model give rise to ample optimization opportunities at run-time, such as the overlapping of data transfers and kernel execution. However, it is not clear which of the existing SYCL implementations perform such scheduling optimizations, and to what extent. Furthermore, SYCL’s high level of abstraction may raise concerns about sacrificing performance for ease of use. Benchmarks are required to accurately assess the performance behavior of high-level programming models such as SYCL. To this end, we present SYCL-Bench, a versatile benchmark suite for device characterization and runtime benchmarking, written in SYCL. We experimentally demonstrate the effectiveness of SYCL-Bench by performing device characterization of the NVIDIA TITAN X GPU, and by evaluating the efficiency of the hipSYCL and ComputeCpp SYCL implementations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/bcosenza/sycl-bench.

  2. 2.

    Given that a suitable C++ compiler exists for the hardware.

  3. 3.

    This approach assumes the existence of one or more OpenCL implementations available on the host machine. If no OpenCL implementation is available, then the SYCL implementation provides only the SYCL host device to run kernels on [12].

  4. 4.

    https://developer.codeplay.com/products/computecpp/ce/guides/platform-support/targeting-nvidia-ptx?version=1.3.0.

References

  1. Parboil Benchmarks Suite (2007). http://impact.crhc.illinois.edu/parboil.php

  2. Alpay, A.: hipSYCL. https://github.com/illuhad/hipSYCL

  3. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs on GPUs. In: Proceedings of IEEE, IISWC (2012)

    Google Scholar 

  4. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the IEEE International Symposium on Workload Characterization, IISWC (2009)

    Google Scholar 

  5. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A characterization of the Rodinia benchmark suite with comparison to contemporary CMP workloads. In: Proceedings of the IEEE International Symposium on Workload Characterization, IISWC (2010)

    Google Scholar 

  6. Codeplay Software: ComputeCpp. https://codeplay.com/products/computesuite/computecpp

  7. Danalis, A., et al.: The scalable heterogeneous computing (SHOC) benchmark suite. In: Proceedings of the 3rd Workshop on GPGPU (2010)

    Google Scholar 

  8. Fang, W., He, B., Luo, Q., Govindaraju, N.K.: Mars: accelerating MapReduce with graphics processors. IEEE Trans. Parallel Distrib. Syst. 22, 608–620 (2011)

    Article  Google Scholar 

  9. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning a high-level language targeted to GPU codes. In: Proceedings InPar (2012)

    Google Scholar 

  10. Intel: SYCL Compiler. https://github.com/intel/llvm

  11. Jia, Z., Maggioni, M., Smith, J., Scarpazza, D.P.: Dissecting the NVidia Turing T4 GPU via microbenchmarking. arXiv preprint arXiv:1903.07486 (2019)

  12. Khronos: SYCL 1.2.1. Technical report, Khronos Group, Inc. (2020). https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

  13. Khronos Group: Codeplay announces world’s first fully-conformant sycl 1.2.1 solution (2018). https://www.khronos.org/news/permalink/codeplay-announces-worlds-first-fully-conformant-sycl-1.2.1-solution

  14. Kulkarni, M., Burtscher, M., Cascaval, C., Pingali, K.: Lonestar: a suite of parallel irregular programs. In: IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS (2009)

    Google Scholar 

  15. Lal, S., Lucas, J., Andersch, M., Alvarez-Mesa, M., Elhossini, A., Juurlink, B.: GPGPU workload characteristics and performance analysis. In: International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS (2014)

    Google Scholar 

  16. Lal, S., et al.: Artifact and Instructions to Generate Main Experimental Results for Conference Proceeding 2020 Paper: SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for Heterogeneous Computing (2020). https://doi.org/10.6084/m9.figshare.12562670, https://springernature.figshare.com/articles/dataset/Artifact_and_Instructions_to_Generate_Main_Experimental_Results_for_Conference_Proceeding_2020_Paper_SYCL-Bench_A_Versatile_Cross-Platform_Benchmark_Suite_for_Heterogeneous_Computing/12562670/1

  17. Lopes, A., Pratas, F., Sousa, L., Ilic, A.: Exploring GPU performance, power and energy-efficiency bounds with cache-aware roofline modeling. In: IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS, pp. 259–268 (2017)

    Google Scholar 

  18. Mei, X., Chu, X.: Dissecting GPU memory hierarchy through microbenchmarking. IEEE Trans. Parallel Distrib. Syst. 28, 72–86 (2017)

    Article  Google Scholar 

  19. Potter, R., Keir, P., Bradford, R.J., Murray, A.: Kernel composition in SYCL. In: Proceedings of the 3rd Workshop on OpenCL, IWOCL (2015)

    Google Scholar 

  20. Silva, H.C.D., Pisani, F., Borin, E.: A Comparative Study of SYCL, OpenCL, and OpenMP. In: Proceedings of SBAC-PADW (2016)

    Google Scholar 

  21. The triSYCL Project: triSYCL. https://github.com/trisycl/trisycl

  22. Thoman, P., Kofler, K., Studt, H., Thomson, J., Fahringer, T.: Automatic OpenCL device characterization: guiding optimized kernel design. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 438–452. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23397-5_43

    Chapter  Google Scholar 

  23. Thoman, P., Salzmann, P., Cosenza, B., Fahringer, T.: Celerity: high-level C++ for accelerator clusters. In: Yahyapour, R. (ed.) Euro-Par 2019: Parallel Processing. LNCS, vol. 11725, pp. 291–303. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29400-7_21

    Chapter  Google Scholar 

  24. Zhang, Y., Hu, Y., Li, B., Peng, L.: Performance and power analysis of ATI GPU: a statistical approach. In: Proceedings of 6th NAS (2011)

    Google Scholar 

Download references

Acknowledgements and Data Availability Statement

This research has been partially funded by the FWF (I 3388) and DFG (CO 1544/1-1, project number 360291326) as part of the DACH project CELERITY.

The datasets and code generated during and/or analysed during the current study are available in the Figshare repository: https://doi.org/10.6084/m9.figshare.12562670 [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohan Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lal, S. et al. (2020). SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for Heterogeneous Computing. In: Malawski, M., Rzadca, K. (eds) Euro-Par 2020: Parallel Processing. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12247. Springer, Cham. https://doi.org/10.1007/978-3-030-57675-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57675-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57674-5

  • Online ISBN: 978-3-030-57675-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics