Abstract
The SYCL standard promises to enable high productivity in heterogeneous programming of a broad range of parallel devices, including multicore CPUs, GPUs, and FPGAs. Its modern and expressive C++ API design, as well as flexible task graph execution model give rise to ample optimization opportunities at run-time, such as the overlapping of data transfers and kernel execution. However, it is not clear which of the existing SYCL implementations perform such scheduling optimizations, and to what extent. Furthermore, SYCL’s high level of abstraction may raise concerns about sacrificing performance for ease of use. Benchmarks are required to accurately assess the performance behavior of high-level programming models such as SYCL. To this end, we present SYCL-Bench, a versatile benchmark suite for device characterization and runtime benchmarking, written in SYCL. We experimentally demonstrate the effectiveness of SYCL-Bench by performing device characterization of the NVIDIA TITAN X GPU, and by evaluating the efficiency of the hipSYCL and ComputeCpp SYCL implementations.
Keywords
- SYCL benchmarks
- Heterogeneous computing
- SYCL runtime
- Cross platform
This is a preview of subscription content, access via your institution.
Buying options






Notes
- 1.
- 2.
Given that a suitable C++ compiler exists for the hardware.
- 3.
This approach assumes the existence of one or more OpenCL implementations available on the host machine. If no OpenCL implementation is available, then the SYCL implementation provides only the SYCL host device to run kernels on [12].
- 4.
References
Parboil Benchmarks Suite (2007). http://impact.crhc.illinois.edu/parboil.php
Alpay, A.: hipSYCL. https://github.com/illuhad/hipSYCL
Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs on GPUs. In: Proceedings of IEEE, IISWC (2012)
Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the IEEE International Symposium on Workload Characterization, IISWC (2009)
Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A characterization of the Rodinia benchmark suite with comparison to contemporary CMP workloads. In: Proceedings of the IEEE International Symposium on Workload Characterization, IISWC (2010)
Codeplay Software: ComputeCpp. https://codeplay.com/products/computesuite/computecpp
Danalis, A., et al.: The scalable heterogeneous computing (SHOC) benchmark suite. In: Proceedings of the 3rd Workshop on GPGPU (2010)
Fang, W., He, B., Luo, Q., Govindaraju, N.K.: Mars: accelerating MapReduce with graphics processors. IEEE Trans. Parallel Distrib. Syst. 22, 608–620 (2011)
Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning a high-level language targeted to GPU codes. In: Proceedings InPar (2012)
Intel: SYCL Compiler. https://github.com/intel/llvm
Jia, Z., Maggioni, M., Smith, J., Scarpazza, D.P.: Dissecting the NVidia Turing T4 GPU via microbenchmarking. arXiv preprint arXiv:1903.07486 (2019)
Khronos: SYCL 1.2.1. Technical report, Khronos Group, Inc. (2020). https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
Khronos Group: Codeplay announces world’s first fully-conformant sycl 1.2.1 solution (2018). https://www.khronos.org/news/permalink/codeplay-announces-worlds-first-fully-conformant-sycl-1.2.1-solution
Kulkarni, M., Burtscher, M., Cascaval, C., Pingali, K.: Lonestar: a suite of parallel irregular programs. In: IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS (2009)
Lal, S., Lucas, J., Andersch, M., Alvarez-Mesa, M., Elhossini, A., Juurlink, B.: GPGPU workload characteristics and performance analysis. In: International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS (2014)
Lal, S., et al.: Artifact and Instructions to Generate Main Experimental Results for Conference Proceeding 2020 Paper: SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for Heterogeneous Computing (2020). https://doi.org/10.6084/m9.figshare.12562670, https://springernature.figshare.com/articles/dataset/Artifact_and_Instructions_to_Generate_Main_Experimental_Results_for_Conference_Proceeding_2020_Paper_SYCL-Bench_A_Versatile_Cross-Platform_Benchmark_Suite_for_Heterogeneous_Computing/12562670/1
Lopes, A., Pratas, F., Sousa, L., Ilic, A.: Exploring GPU performance, power and energy-efficiency bounds with cache-aware roofline modeling. In: IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS, pp. 259–268 (2017)
Mei, X., Chu, X.: Dissecting GPU memory hierarchy through microbenchmarking. IEEE Trans. Parallel Distrib. Syst. 28, 72–86 (2017)
Potter, R., Keir, P., Bradford, R.J., Murray, A.: Kernel composition in SYCL. In: Proceedings of the 3rd Workshop on OpenCL, IWOCL (2015)
Silva, H.C.D., Pisani, F., Borin, E.: A Comparative Study of SYCL, OpenCL, and OpenMP. In: Proceedings of SBAC-PADW (2016)
The triSYCL Project: triSYCL. https://github.com/trisycl/trisycl
Thoman, P., Kofler, K., Studt, H., Thomson, J., Fahringer, T.: Automatic OpenCL device characterization: guiding optimized kernel design. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 438–452. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23397-5_43
Thoman, P., Salzmann, P., Cosenza, B., Fahringer, T.: Celerity: high-level C++ for accelerator clusters. In: Yahyapour, R. (ed.) Euro-Par 2019: Parallel Processing. LNCS, vol. 11725, pp. 291–303. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29400-7_21
Zhang, Y., Hu, Y., Li, B., Peng, L.: Performance and power analysis of ATI GPU: a statistical approach. In: Proceedings of 6th NAS (2011)
Acknowledgements and Data Availability Statement
This research has been partially funded by the FWF (I 3388) and DFG (CO 1544/1-1, project number 360291326) as part of the DACH project CELERITY.
The datasets and code generated during and/or analysed during the current study are available in the Figshare repository: https://doi.org/10.6084/m9.figshare.12562670 [16].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lal, S. et al. (2020). SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for Heterogeneous Computing. In: Malawski, M., Rzadca, K. (eds) Euro-Par 2020: Parallel Processing. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12247. Springer, Cham. https://doi.org/10.1007/978-3-030-57675-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-57675-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57674-5
Online ISBN: 978-3-030-57675-2
eBook Packages: Computer ScienceComputer Science (R0)